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1. Desirable Properties

Definition: (Immorlica et al., 2008) A cost-sharing
method ξ is in the β-core w.r.t. costs C if ξ is β-BB and
for all S ⊆ T ⊆ [n] it holds that

∑
i∈S ξi(T ) ≤ β ·C(S).

Note: Immediately by definition, any β-BB cross-
montonic cost-sharing method is in the β-core.

Definition: (Deb and Razzolini, 1999) A cost-sharing
mechanismM satisfies equal treatment if for all i, j ∈ [n]
and all b ∈ Rn it holds that bi = bj implies Mi(b) =
Mj(b).

Definition: A social choice function f is pareto optimal
if for every type vector t there is no outcome o′ ∈ O so
that U(o′) > U(f(t)).

Definition: (Penna et al.) A cost-sharing mechanism
is renameproof if for all players i, j ∈ [n], all true val-
uations v and all {i, j}-variants b with bj = vi and
bi = vj = −1 it holds that uj(b | vi) ≤ ui(v).

Definition: (Penna et al.) A cost-sharing mechanisms
is reputationproof if the previous definition holds (at
least) for all j < i.

1.1. Solution Concepts for Cooperative Games

Definition: Let x,y ∈ Rn≥0 be two allocations,
∑
xi =∑

yi. Let ·̃ : Rn≥0 → Rn≥0 sort the components of a
vector. Vector x Lorenz dominates y iff for all j ∈ [n] it
holds that

∑j
i=1 ỹi ≤

∑j
i=1 x̃i, with at least one strict

inequality.
Definition: (Dutta and Ray, 1989) The egalitarian
solution is the set of all stable Lorenz-undominated al-
locations, where an allocation is stable if no (proper)
subcoalition admits a better stable Lorenz-undominated
allocation. (Better: At least one strictly improves, no-
body becomes worse off.)
Formal definition: Given a cooperative game v : 2[n] →
R≥0, define the Lorenz map and Lorenz cores

EnA := {x ∈ A | @y ∈ A : ∀j ∈ [n] :∑j
i=1 ỹi ≤

∑j
i=1 x̃i,

with at least one strict inequality}
L(S) := {x ∈ RS | x feasible for S and

@T ( S,y ∈ E|T |L(T ) : y > xT } .

The set of egalitarian allocations is EnL([n]).
Theorem: There is at most one egalitarian allocation
(called the egalitarian solution). It C is submodular, it
can be computed be iteratively picking the most-cost ef-
ficient remaining set and assinging the respective prices.
Otherwise, it may not exist.
E.g., if n = 3, C({1, 2, 3}) = 2 and C(S) = 1 for all
other non-empty S, then the egalitarian solution does
not exist.
Note: The motivation of the egalitarian solution is to
reconcile egalitarianism and stability.
Definition: Given a non-negative random variable T
with distribution G and density g, the hazard rate h :
R>0 → R is defined as

h(t) := lim
∆→0

Pr[t ≤ T ≤ t+ ∆ | t ≤ T ]
∆

=
g(t)

1−G(t)
.

Note: The hazard rate is the rate that an event occurs
at t, given that it has not occurred before t.
Theorem: (Mutuswami, 2004) Suppose that all valu-
ations vi are independent draws from a common distri-
bution function whose support is (0,m). Suppose the
hazard rate is non-decreasing, i.e., h′(x) ≥ 0. Then,
the egalitarian solution maximizes the probability that
a given subset S of players can afford the cost shares
ξ(S).
Theorem: For submodular cost functions, the egalitar-
ian solution is unique. The corresponding cost-sharing
method is cross-monotonic.
Proof: Suppose T = S ∪ j. Computing the egalitarian
method partitions S into S1 ∪ S2 ∪ . . . and T into T1 ∪
T2∪ . . . . Now, by way of contradiction, suppose there is
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a k (w.l.o.g., this k is minimal) so that there is a player
i ∈ Sk with ξi(S) > ξi(S ∪ j). Let m be defined by
i ∈ Tm.
Define Vk :=

⋃k
j=1 Sj and Wm :=

⋃m
j=1 Tj . First note

Vk−1 ⊆ Wm−1. Otherwise, there is a j ∈ Vk−1 with
j /∈Wm−1, so ξj(S) ≤ ξi(S) < ξi(T ) ≤ ξj(T ). A contra-
diction to the choice of k as being minimal.
Define Z := Wm−1 ∩ Sk. By definition of Tm, submod-
ularity, and inserting Z,

ξi(T ) =
C(Wm−1 ∪ Tm)− C(Wm−1)

|Tm|

≤ C(Wm−1 ∪ Vk)− C(Wm−1)
|Vk \Wm−1|

≤ C(Vk)− C(Wm−1 ∩ Vk)
|Vk \Wm−1|

=
C(Vk)− C(Vk−1 ∪ Z)

|Sk \ Z|

=
C(Vk)− C(Vk−1)− [C(Vk−1 ∪ Z)− C(Vk−1)]

|Sk| − |Z|

≤ C(Vk)− C(Vk−1)
|Sk|

= ξi(S) .

Here, the last inequality holds because

C(Vk)− C(Vk−1)
|Sk|

≤ C(Vk−1 ∪ Z)− C(Vk−1)
|Z|

by definition of Sk and a
b ≤

c
d ⇔ ad ≤ cb ⇔ ab − cb ≤

ab− ad⇔ a−c
b−d ≤

a
b . �

Definition: (See, e.g., Osborne and Rubinstein (1994,
p. 290)) A value is a function that assigns a unique fea-
sible payoff profile to every coalitional game with trans-
ferable payoff.
Definition: (Shapley, 1953) Given a cooperative game
v and a set of players S ⊆ [n], the Shapley-value contri-
butions are defined as

ξi(S) :=
∑
T⊆S\i

|T |! · (|S| − |T | − 1)!
|S|!

· [v(T ∪ i)− v(T )] .

Definition: (Hart and Mas-Colell, 1989) Given a game
v : 2[n] → R, a function P : 2[n] → R with P (∅) = 0 is
called a potential function if for all S ⊆ [n]∑

i∈S
DiP (S) = v(S) ,

where DiP (S) := P (S)− P (S \ i).
Theorem: (Hart and Mas-Colell, 1989) There exists a
unique potential function P , and (DiP (S))i∈S coincides
exactly with the Shapley value for coalition S.
Lemma: It holds that

P (S) =
∑
T⊆S

(t− 1)!(s− t)!
s!

· v(T ) .

where t = |T | and s = |S|.
Proof: Denote by ξ : 2[n] → Rn the Shapey-value con-
tributions. Note that

P (S \ i) =
∑
T⊆S\i

(t− 1)!(s− t− 1)!
(s− 1)!

· v(T ) .

We have P (S)− P (S \ i)

=
∑
T⊆S\i

(t− 1)!(s− t− 1)!
s!

· ((s− t)− s) · C(T )

+
∑

T⊆S|T3i

(t− 1)!(s− t)!
s!

· C(T )

= −
∑
T⊆S\i

t! · (s− t− 1)!
s!

· C(T )

+
∑
T⊆S\i

t! · (s− t− 1)!
s!

· C(T ∪ i)

By the previous characterization, this completes the
proof. �

Note: If ξ contains the Shapley-value contributions,
then for all orders s1, . . . , s|S| of S it holds that

|S|∑
i=1

ξsi
({s1, . . . , si}) = P (S) .

The Shapley value is the only value with this property.
The Shapley value can also be characterized in other
ways. E.g., it is the only value that satisfies all of the
following:
• feasible,

∑
ξi(S) = v(S)

• anonymous
• additive
• ξi(S) = 0 if marginal costs of i are always 0

Theorem: (Sprumont, 1990) Given that C is submod-
ular, the Shapley value is cross-monotonic.
Proof: The Shapley value is the average, over all order-
ings of the players, of the marginal cost distributions
ξi(S) = C(S ∩ [i])− C(S ∩ [i− 1]). If C is submodular,
then it is immediate that ξ is cross-monotonic.
Shapley (1971) proved that the core of a convex game
is a polytope whose extreme points are the (usual)
marginal contributions vectors. Now, a convex combina-
tion of cross-monotonic cost-sharing methods is clearly
cross-monotonic, too. �

Theorem: Let U 6= ∅ be a finite set, C : 2U → R
be a set function. The following two statements are
equivalent:

i) for all A,B ⊆ U : C(A)+C(B) ≥ C(A∪B)+C(A∩
B)

ii) for all D ⊆ E ⊆ U and i /∈ E : C(D ∪ i)− C(D) ≥
C(E ∪ i)− C(E)
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Proof: For the proof, we rewrite (i). For all A,B ⊆ U :
C(A)− C(A ∩B) ≥ C(A ∪B)− C(B).
“⇒”: Let D ⊆ E ⊆ U and i ∈ U . Setting A := D ∪ {i}
and B := E gives the desired result: C(D∪ i)−C(D) ≥
C(E ∪ i)− C(E).
“⇐”: Let A,B ⊆ U and let a1, . . . , an denote the ele-
ments of A\B (in any arbitrary order). By assumption,
we have C((A∩B)∪a1)−C(A∩B) ≥ C(B∪a1)−C(B)
and similarly

C((A ∩B) ∪ {a1, . . . , ak})
− C((A ∩B) ∪ {a1, . . . , ak−1})
≥ C(B ∪ {a1, . . . , ak})− C(B ∪ {a1, . . . , ak−1})

for all k ∈ [n]. Summing each side up for all k ∈ [n]
gives the desired result. �

2. Design Techniques

2.1. Mechanism Design Basics

Definition: Every player i is characterized by his type
ti ∈ Ti, which determines his preference over different
outcomes. That is, Ui(o | ti) is the utility of player i
with type ti for outcome o ∈ O.
Definition: A social choice function f : T1 × · · · ×
Tn → O chooses an outcome f(t) ∈ O, given types
t = (t1, . . . , tn).
Definition: A social welfare function F : T1 × · · · ×
Tn ×O → R ranks conceivable social states.
Definition: A mechanism g : S1×· · ·×Sn → O defines
the set of strategies Si available to each player i, and an
outcome rule such that g(s) is the outcome implemented
by the mechanism for strategy profile s = (s1, . . . , sn).
Theorem: (Revelation Principle) If there exists a
mechanism g that implements a social choice function
f in dominant strategies, then f is also truthfully im-
plementable in dominant strategies (i.e., with a strate-
gyproof mechanism).

2.2. Impossibility results

Definition: Player i’s utilities are general when for ev-
ery complete and transitive ordering � of the outcome
set O there is a type ti so that Ui(· | ti) induces �.
Definition: neutral, unanimity, irrelevant alternatives
Theorem: (Arrow, 1963) If players have general utili-
ties, then every social welfare function over a set of more
than 2 alternatives that satisfies unanimity and indepen-
dence of irrelevant alternatives is a dictatorship.
Note: A well-known special case is the Condorcet
paradox. Suppose n = 3 and O = {A,B,C} with
A �1 B �1 C, B �2 C �2 A, and C �3 A �3 B.
By pairwise comparison, we get A � B, B � C, and
C � A.

Theorem: (Gibbard, 1973; Satterthwaite, 1975) If
players have general utilities and f is an incentive-
compatible social choice function onto A, where |A| ≥ 3,
then f is a dictatorship.

2.3. Restricted Domains

Definition: Suppose O = A × Rn, i.e., an outcome
consists of an alternative a ∈ A and monetary transfers
p ∈ Rn. We decompose a social choice f(t) into a choice
rule q(t) and a payment rule x(t).

Definition: A choice rule q is implementable if there is
a payment rule x so that (q, x) is implementable.

Definition: Player i’s utilities are quasi-linear when
the type of each player i ∈ [n] is a valuation function
ti : A→ R so that Ui(a,p | ti) = ti(a) + pi.

In an unpublished paper, Shenker (1993) proved sev-
eral results on the relationship between various forms of
truthfulness, non-bossiness, and other technical proper-
ties. However, his results do not apply in settings with
quasi-linear utilities.

Definition: A domain of utility functions U is
monotonically closed if for all U, V ∈ U and all a, b ∈ A
with (1) U(a) ≥ U(b) ⇒ V (a) ≥ V (b) and (2) U(a) >
U(b) ⇒ V (A) > V (b) there is a utility function W ∈ U
so that for all c ∈ A it holds that (3) U(a) ≥ U(c) ⇒
W (a) ≥W (c) and (4) V (b) ≥ V (c)⇒W (b) ≥W (c).

In general, the domain of quasi-linear utility functions
is not monotonically closed:

xi

qi
1

0

a

b

VU W

A choice function q : T → A is called an affine
maximizer if for some subrange A′ ⊆ A, so some
player weights w1, . . . , wn ∈ R>0 and for some out-
come weights ca ∈ R, where a ∈ A′, we have that
f(t) ∈ arg maxa∈A′

(
ca +

∑
i∈[n] wi · ti(a)

)
.

Theorem: (Roberts, 1979) Suppose |A| ≥ 3, q :
T1×· · ·×Tn → a is a choice rule onto A, and Ti = RA for
all i ∈ [n]. Then q is implementable in dominant strate-
gies (= truthfully implementable due to the revelation
principle) if and only if q is an affine maximizer.

Definition: A choice rule q satisfies weak monotonicity
(WMON) if for all players i ∈ [n], and all i-variants t, t′

with a := q(t) 6= q(t′) =: b it holds that ti(a) − ti(b) ≥
t′i(a)− t′i(b).
Theorem: If a choice rule q is implementable in domi-
nant strategies then q satisfies WMON. Conversely, if f
satisfied WMON and all Ti ⊆ RA are convex sets, then
f is implementable in dominant strategies.

3



Cost Sharing – Relevant Work for PhD Defense on June 15, 2009; Florian Schoppmann

Note: It is known that WMON is not a sufficient con-
dition for dominant strategy implementability.

Definition: A domain of quasi-linear utilities is called
single-parameter when each valuation function is deter-
mined by a single real parameter.

Note, e.g., that much effort has been spent for devising
monotone (in the machine speeds) approximation algo-
rithms for makespan minimization on parallel related
machines. A randomized PTAS is due to Dhangwatno-
tai et al. (2008).

2.4. Groves Mechanisms

Definition: (Groves, 1973) A cost-sharing mechanism
M = (Q, x) is a Groves mechanism with respect to costs
C if for all b ∈ Rn and players i ∈ [n] it holds that

Q(b) ∈ arg max
T⊆[n]

{∑
j∈T

bj − C(T )

}
xi(b) = C(Q(b))−

∑
j∈Q(b)\i

bj + hi(b−i) ,

where hi : R[n]\i → R is a function independent of bi.

Note: Groves mechanisms are also called VCG mech-
anisms (Nisan, 2007, p. 218) or Clarke-Groves mecha-
nisms (Moulin, 1999, p. 521). The name Groves mech-
anisms is used, e.g., in (Parkes, 2001, p. 41).

Theorem: Groves mechanisms are SP.

Proof: Assuming hi ≡ 0, it holds for any i-variant b of
v that

ui(b) = vi · qi(b) +
∑

j∈Q(b)\i

bj − C(Q(b))

=
∑

j∈Q(b)

vj − C(Q(b)) ≤ ui(v) ,

where the last inequality holds because Q(b) can, by
definition, only be inferior to Q(v). �

Theorem: Any cost-sharing mechanism that is both
SP and 1-EFF is a Groves mechanism.

Note: For the domain with arbitrary valuation func-
tions, a corresponding statement has been proven by
Green and Laffont (1977). For the (single-parameter)
cost-sharing model, the proof is easier.

Proof: Note first that a mechanism M = (Q, x) is a
Groves mechanism if and only if for all i-variants b, b′ it
holds that

i) Q(b) ∈ arg maxT∈[n]

{∑
j∈T bj − C(T )

}
,

ii) when S := Q(b), T := Q(b′) then xi(b) − xi(b′) =[
C(S)−

∑
j∈S\i bj

]
−
[
C(T )−

∑
j∈T\i bj

]
.

By way of contradiction, suppose now that (ii) does not
hold for some pair b, b′. Denote by s, t the respective
allocations. If si = ti then xi(b) = xi(b′) due to the
threshold property. Moreover, C(S) = C(T ) due to (i),
so also

[
C(S)−

∑
j∈S\i bj

]
−
[
C(T )−

∑
j∈T\i bj

]
.

W.l.o.g. consider the case i ∈ S but i /∈ T . Due to the
threshold property, we have∑

j∈S\i

bi + θi(b−i)− C(S) =
∑
j∈T\i

bi − C(T ) ,

i.e., xi(b) − xi(b′) = θi(b−i) =
[
C(S)−

∑
j∈S\i bj

]
−[

C(T )−
∑
j∈T\i bj

]
. �

Definition: (Moulin and Shenker, 2001) A cost-sharing
mechanism is a marginal cost pricing mechanism if it is
a Groves mechanism with

Q(b) = max

(
arg max

T⊆[n]

{∑
j∈T

bj − C(T )

})

hi(b−i) = max
T⊆[n]\i

{∑
j∈T

bj − C(T )

}
.

Here, the max around the arg max chooses the maxi-
mum subset, which is well-defined.
Theorem: (Moulin and Shenker, 2001) Any cost-
sharing mechanism M (satisfying NPT and VP) that is
both SP and 1-EFF if and only if it welfare-equivalent
to a marginal cost pricing mechanism.
Proof: “⇐”: Due to∑
j∈Q(b)\i

bj − C(Q(b)) ≤ hi(b−i) ≤
∑

j∈Q(b)

bj − C(Q(b))

we have xi(b) ∈ [0, bi · qi(b)], i.e., NPT and VP hold.
“⇒”: From bi = 0 we have hi(b−i) =

∑
j∈Q(b)\i bj −

C(Q(b−i, 0)), which is the same as for the marginal cost
pricing mechanism.
Now suppose i is served by the marginal cost pricing
mechanism but not by M (all other players receive pre-
cisely the same outcome). Then xi(b) = bi, which proves
the claim. �

2.5. Primal-Dual Algorithms

The primal-dual schema for solving IPs:

i) Write down LP relaxation, find dual. Find some
intuitive meaning for the dual variables.

ii) Start with vectors x = 0, y = 0, which are dual
feasible, but primal infeasible.

iii) Until the primal is feasible

(a) increase the dual values yi until some dual con-
traint(s) go(es) tight, while maintaining dual
feasibility
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(b) Select some subset of the tight dual contraints,
and increase the primal variable corresponding
to them by an integral amount

iv) For the analysis, prove that the output pair of vec-
tors satisfies

∑
i cixi ≤ ρ ·

∑
bjyj for as small a

value of ρ as possible.

Beispiel: Facility Location: Input is bipartite graph
G = (V,E), where V = F ∪ N . Each facility v ∈ F
has opening costs fv, and each edge e ∈ E is associated
with a connection cost ce. The triangle inequality is
fulfilled. A star S = (f,N ′) consists of a facility f and
a set of connected users N ′. The set of all starts is
denoted by S . The cost cS for a star S = (v,N ′) is
cS = fv +

∑
i∈N ′ cvi.

Formulation as IP:

min
∑
S∈S

cS · yS

s.t.
∑
S3i

yS ≥ 1 for all i ∈ C

yS ∈ {0, 1} for all S ∈ S

Dual for LP relaxation:

max
∑
i∈N

ξi

s.t.
∑
i∈S

ξi ≤ cS for all S ∈ S

ξi ≥ 0 for all i ∈ N

The primal-dual algorithm where dual variables is frozen
once the corresponding stars are “tight” is the the ba-
sis of the SP cost-sharing mechanism by Devanur et al.
(2005). Their mechanism can as well be interpreted as
an egalitarian mechanisms; the next set that “goes tight”
is clearly the “most cost-effective” set.
A cross-monotonic cost-sharing method is obtained
when cost shares correspond to the dual variables at
the time they become tight; however, the dual variables
continue to be increased (Pál and Tardos, 2003).

2.6. Cost-Sharing Mechanisms

Acyclic mechanisms: For every subset of players S ⊆ [n],
consider the following directed graph. The vertices are
the players in S and there is an edge (i, j) iff ξj(S \ i) <
ξj(S), i.e., player j benefits from removing player i. This
graph is acyclic. In particular, if there is an edge (i, j),
then the offer time τj(S) > τi(S).

2.7. Lower Bounds for Cross-Monotonicity

Many lower bounds on the approximate budget balance
of families of cost-sharing mechanisms have been shown.

Immorlica et al. (2008) were the first to systematically
establish such bounds.
In the edge-cover cost-sharing problem, we are given a
graph G = (V,E) without isolated vertices. The set of
players is V , and C(S) = min. size of a set of edges that
spans all vertices in S.
Theorem: (Immorlica et al., 2008) In general, cross-
monotonic cost-sharing methods for the edge cover prob-
lem are no better than 2-BB.
Proof: (using the probabilistic method) LetKn,n denote
the complete bipartite graph with 2n nodes. For v ∈ V ,
denote by Sv the union of v with its adjacent nodes (i.e.,
with the other partition). Clearly, C(Sv) = n.
Let ξ be a β-BB cost-sharing method, and consider now
an arbitrary node v ∈ V picked uniformly at random.

Ev

[∑
i∈Sv

ξi(Sv)

]
≤ Ev [ξv({v})] + Ev

[ ∑
u∈Sv\v

ξu({u, v})

]
≤ β + n · Eu|v [ξu({u, v})]
= β + n · E{u,v} [ξ({u, v})]

≤ β + n · β
2

= β ·
(

1 +
n

2

)
.

It follows that there is a v ∈ V so that

1 ≤
∑
i∈Sv

ξi(Sv)
C(Sv)

≤
β ·
(
1 + n

2

)
n

= β ·
(

1
n

+
1
2

)
where the first inequality is due to β-BB (cost recovery).
Consequently, β ≥ 2n

n+2 . �

Theorem: In general, coss-monotonic cost-sharing
methods for the makespan problem with identical ma-
chines and identical jobs are no better than 2-BB.
Proof: Let ξ be a β-BB cost-sharing method. Suppose
there are m = n−1 machines, i.e., C(S) = 1 for S ( [n]
and C([n]) = 2. Hence, there is a player i with ξi([n]) ≤
β
m . Then,

2 ≤
∑
j∈[n]

ξj([n]) ≤ β

m
+
∑

j∈[n]\i

ξi([n]) ≤ β

m
+ β

=
m+ 1
m

· β ,

i.e., β ≥ 2m
m+1 . �

Definition: (Roughgarden and Sundararajan, 2006) A
cost-sharing method ξ is α-summable with regard to
costs C if for all sets S ⊆ [n] and all orders s1, . . . , s|S|
of S it holds that

|S|∑
i=1

ξsi
({s1, . . . , si}) ≤ α · C(S) .

Theorem: (Roughgarden and Sundararajan, 2006)
Suppose ξ is a cross-monotonic cost-sharing method that
is β-BB with regard to approximate costs C ′ and opti-
mal costs C, and moreover α-summable with regard to
C. Then, the Moulin mechanism induced by ξ is α-EFF.

5
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Proof: Let Q be the set returned by the Moulin mech-
anism for v, and let P be a set with optimum social
cost. For the analysis, renumber the player so that
P \ Q = {m + 1 . . . n}, and the players in P \ Q are
deleted by the Moulin mechanism in descending order
of their numbers. For convenience, define Pi := P ∩ [i].
Then,

SC (Q) = C ′(Q) +
∑
i/∈Q

vi ≤
∑
i∈Q

ξi(Q) +
∑
i/∈Q

vi (1)

≤
∑

i∈Q∩P
ξi(Q) +

∑
i/∈Q∩P

vi (2)

<
∑

i∈Q∩P
ξi(Pi) +

∑
i∈P\Q

ξi(Pi) +
∑
i/∈P

vi (3)

≤ α · C(P ) +
∑
i/∈P

vi .

Note that (1) is due to BB and (2) is due to ξi(Q) ≤ vi
for i ∈ Q. Finally, (3) holds because Pi ⊆ Q for i ∈ Q∩P
(as P \Q = {m+ 1 . . . n}) and because when i ∈ P \Q
was dropped, all players in Pi were still in the game. �

2.8. General Lower Bounds

Theorem: (Feigenbaum et al., 2003) In general, no
SP cost-sharing mechanism can guarantee both approxi-
mate budget-balance and an approximation of the social
welfare.
Proof: Consider the excludable public case, C(S) = 1
for S 6= ∅. Let vi = 1

n−1 . Then, Q(v) = [n] because
otherwise the social welfare is 0 whereas

∑
i∈[n] vi− 1 =

1
n−1 . Now, for every ε > 0 we have i ∈ Q(v−i, ε) due
to the approximation guarantee of the social welfare.
Consequently, xi(v) = θi(v−i) = 0, and the mechanism
is not approximate budget-balanced. �

Theorem: (Dobzinski et al., 2008) Any SP and β-BB
cost-sharing mechanism M = (Q, x) is Ω(log n)-EFF.
Proof: Probabilistic method: There is a “bad” instance.
Let λ ≥ 1 be a parameter and suppose the true val-
uations of each player are i.i.d. random variables with
Pr[vi = 0] = 1

n and for 1 ≤ t ≤ n:

Pr
[
vi ≤

t

λn

]
=

1
n

+
∫ t

1

1
z2
dz =

1
n

+ 1− 1
t

Therefore,

E [vi] =
∫ 1/λ

1/λn

z · 1
λnz2

dz =
1
λn
· [lnn]1/λ1/λn

=
− lnλ+ ln(λn)

λn
=

lnn
λn

and

E
[
v2
i

]
=
∫ 1/λ

1/λn

z2 · 1
λnz2

dz =
1
λn
·
(

1
λ
− 1
λn

)
=
n− 1
λ2n2

Define V =
∑
vi. Then, E[V ] = lnn

λ and Var[V ] =∑
Var[vi] ≤ n · E[v2

i ] = 1
λ2 . Hence, Chebyshev’s in-

equality yields for t > 0 that

Pr
[

lnn
λ
− t ≤ V

]
≥ Pr

[∣∣∣∣V − lnn
λ

∣∣∣∣ ≤ t]
= 1− Pr

[∣∣∣∣V − lnn
λ

∣∣∣∣ ≥ t]
≥ 1− Var[V ]

t2

= 1− 1
λ2t2

Let θ := θi(v−i). Then, the expected revenue from
player i is

θ · Pr[vi > θ] = θ ·
(

1
θλn

− 1
n

)
=

1
λn
− θ

n
≤ 1
λn

.

Consequently, the total expected revenue is at most 1
λ .

Then, since M is β-BB, we have Pr[Q(v) = ∅] ≥ 1− 1
λ .

Now,

Pr [lnn− t ≤ V and Q(v) = ∅] ≥ 1− 1
λ2t2

− 1
λ
.

by the union bound. Hence, the social cost is at least
lnn
λ − t with strictly positive probability. However, the

optimal social cost is 1. �

Theorem: (Moulin and Shenker, 2001; Roughgarden
and Sundararajan, 2006) Given submodular costs C,
Moulin mechanisms driven by the Shapley value are Hn-
EFF.
Proof: It suffices to show Hn-summability. Suppose
s1, . . . , s|S| is an arbitrary order of S. It holds that

|S|∑
i=1

ξsi
({s1, . . . , si}) = P (S) =

∑
T⊆S

(t− 1)!(s− t)!
s!

· C(T )

≤
n∑
t=1

(
s

t

)
· (t− 1)!(s− t)!

s!
· C(S)

= Hn · C(S) ,

where the inequality is because C is non-decreasing. �

Theorem: Given subadditive costs, any (1-BB w.r.t.
costs C) sequential stand-alone mechanism is n-EFF.
Proof: Let S be the set chosen by the sequential stand-
alone mechanism, and T be a socially optimal set. De-
note by s, t ∈ {0, 1}n the corresponding allocation vec-
tors. For each i ∈ [n], define

σi := C(S ∩ [i])− C(S ∩ [i− 1]) + (1− si) · vi .

Then
∑n
i=1 σi = C(S) +

∑
i/∈S vi = SC (S). Conse-

quently, it suffices to show that each σi ≤ SC (P ).
By the definition of sequential stand-alone mechanisms,
if i ∈ S, then σi = C(S ∩ [i]) − C(S ∩ [i − 1]) ≤ vi due
to the definition of sequential stand-alone mechanisms
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and σi ≤ C({i}) due to subadditivity. If i /∈ S, then
σi = vi < C((S∩[i−1])∪{i})−C(S∩[i−1]) ≤ C({i}) due
to the definition of sequential stand-alone mechanisms
and due to subadditivity.

Now, if i ∈ P then C({i}) ≤ C(P ) ≤ SC (P ). Other-
wise, if i /∈ P , then vi ≤

∑
j /∈P vi ≤ SC (P ). Conse-

quently, σi ≤ SC (P ). �

Note: This bound is attained if C(S) = 1 for all S 6= ∅
and vi = 1− ε for all players i ∈ [n].

2.9. Characterizing Collusion-Resistant Cost
Sharing

Lemma: (Moulin, 1999) Suppose ξ is the cost-sharing
method induced by a 2-GSP cost-sharing mechanism.
Then for all A ⊆ [n] and all j, k ∈ [n] at least one of the
following conditions holds:

i) ξj(A ∪ {j, k}) < ξj(A ∪ {j}) and
ξk(A ∪ {j, k}) < ξk(A ∪ {k})

ii) ξj(A ∪ {j, k}) = ξj(A ∪ {j})

iii) ξk(A ∪ {j, k}) = ξk(A ∪ {k})

Theorem: WSGSP ⇒ separable

Proof: (by induction over m ∈ [n]0) Let v be the true
valuations. Define b by bi = b∞ if i ∈ Q(v) and bi = −1
otherwise. Define also bS := (v−S , bS).

IH: ∀S ⊆ [n], |S| ≤ m : MS(v) = MS(bS) and u(v) =
u(bS)

IS (m− 1→ m): Suppose S = T ∪ i, |T | ≤ m− 1

i) uS(bS) ≤ uS(v), otherwise some i ∈ S could im-
prove at bS\i by bidding bi.

ii) uS(bS) ≥ uS(v). Otherwise, since qS(v) = qS(bS)
and due to (i), S could help some i ∈ S at bS by
bidding vS .

Consequently, MS(v) = MS(bS), and GSP implies
u(v) = u(bS). �

Theorem: (Moulin, 1999) GSP + 1-BB w.r.t. submod-
ular costs ⇒ cross-monotonic cost shares

Proof: Suppose ξ is not cross-monotonic. Let A ⊂ [n]
be so that |A| is minimal and there are i, k /∈ A, i 6= k,
with ξk(A ∪ k) < ξk(A ∪ {i, k}).

Observe that

• ξA(A) ≥ ξA(A ∪ j) due to minimality of |A|,

• ξj(A ∪ j) = ξj(A ∪ {j, k}) due the lemma above,

• and ξA∪k(A ∪ k) ≤ ξA∪k(A ∪ {j, k}) due to semi-
cross monotonicity.

Hence,

C(A ∪ j)− C(A) =
∑
i∈A∪j

ξi(A ∪ j)−
∑
i∈A

ξi(A)︸ ︷︷ ︸
≥ξi(A∪j)

≤ ξj(A ∪ j) = ξj(A ∪ {j, k})

= C(A ∪ {j, k})−
∑
i∈A∪i

ξi(A ∪ {j, k})︸ ︷︷ ︸
≥ξi(A∪k)

= C(A ∪ {j, k})− C(A ∪ k)

Theorem: (Immorlica et al., 2008) GSP + upper-
continuous ⇒ cross-monotonic cost shares
Proof: By way of contradiction: Let S ⊆ [n], j ∈ S, and
k /∈ S with so that ξj(S ∪ k) > ξj(S).
Let v be the true valuation vector with vi = b∞ for
all i ∈ S \ k, vk = ξk(S ∪ k), and vi = −1 for all
i ∈ [n]\(S∪k). By upper-continuity, we have k ∈ Q(v).
Now, player k could help j at v by bidding −1.
Theorem: (Schummer, 2000) Bribe-proof⇒ every θi(·)
is a constant
Proof: Let v be the true valuation vector, i ∈ [n], and
j ∈ [n] \ i. We show that

i) vi is a local maximizer of bi 7→ uj(v−i, bi),

ii) bi 7→ uj(v−i, bi) is continuous, and

iii) any continuous function f : R → R where every
x ∈ R is a local maximizer is a constant.

(i) Due to the threshold property, there is δ > 0 so
that for all bi ∈ R with |vi − bi| < δ it holds that
ui(v−i, bi) = ui(v). Consequently, bribe-proofness im-
plies uj(v−i, bi) ≤ uj(v) for every such bi.
(ii) By way of contradiction, suppose bi 7→ uj(v−i, bi) is
not continuous at vi. Then (also due to (i)) there are
0 < δ < ε and an i-variant b of v with |bi − vi| < δ,
ui(v−i, bi) = ui(v), and uj(v−i, bi) + ε ≤ uj(v). Now,
player j can bribe i at (v−i, bi) by paying δ because
ui(v−i, bi | bi)− ui(v | bi) ≤ |bi − vi| < δ < ε. A contra-
diction.
(iii) By way of contradiction, let x, y ∈ R so that
w.l.o.g. x < y and f(x) < f(y). Since f is continuous,
z := max

(
f−1({x}) ∩ [x, y]

)
is well-defined. However,

due to the intermediate value theorem, z is not a local
maximizer. �

Theorem: Dutta-Ray mechanisms with most-cost-
efficient set and price selection are 2Hn-EFF.
Proof: LetQ be the set output by the acyclic mechanism
for v, and P be a set with optimum social cost.

SC (Q) = C ′(Q) +
∑
i/∈Q

vi ≤
∑

i∈Q∩P
xi +

∑
i∈Q\P

xi +
∑
i/∈Q

vi

≤
∑

i∈Q∩P
xi +

∑
i∈P\Q

vi +
∑
i/∈P

vi ,

7



Cost Sharing – Relevant Work for PhD Defense on June 15, 2009; Florian Schoppmann

hence,

SC (Q)
C(P ) +

∑
i/∈P vi

≤
∑
i∈Q∩P xi +

∑
i∈P\Q vi

C(P )
.

We first bound
∑
i∈Q∩P xi. So let i ∈ Q ∩ P . Suppose

it was accepted in iteration k, and the remaining set of
players were Qk, the set of already accepted players Nk.
Because of most-cost-efficient set selection and subaddi-
tivity, we have

xi ≤
C(Nk ∪ (Q ∩ P ))− C(Nk)

|(Q ∩ P ) \Nk|
≤ C(Q ∩ P )
|(Q ∩ P ) \Nk|

.

Now the “worst-case” happens when players are dropped
one-by-one. Then,

∑
i∈Q∩P xi ≤ H|Q∩P | · C(Q ∩ P ).

Finally, we bound
∑
i∈P\Q vi. There is a player i ∈ P \Q

with vi <
C(P\Q)
|P\Q| because otherwise P \ Q would have

been accepted at the time the first player of P \Q was
rejected. Repeating the argument gives

∑
i∈P\Q vi ≤

H|P\Q| · C(P \Q). The proof follows. �

Theorem: The prices offered by Dutta-Ray mecha-
nisms are increasing over iterations.
Proof: Since

C(N ∪ S)− C(N)
|S|

≤ C(N ∪ S ∪ S′)− C(N)
|S|+ |S′|

it also holds that

C(N ∪ S)− C(N)
|S|

≤ C(N ∪ S ∪ S′)− C(N ∪ S)
|S′|

because of a
b ≤

c
d ⇔ ad ≤ cb ⇔ ad − ab ≤ cb − ab ⇔

a
b ≤

c−a
d−b . �

Definition: (Brenner and Schäfer, 2008) A cost-sharing
method ξ is said to be weakly monotone with respect to
costs C ′ if for all sets of players A ⊆ B ⊆ [n] it holds
that

∑
i∈A ξi(B) ≥ C ′(A).

Theorem: (Brenner and Schäfer, 2008) Let M be a
sequential stand-alone mechanism so that its induced
cost-sharing method ξ is weakly monotone with respect
to the actual costs C ′. Let the optimal costs be C, and
suppose it holds for all A,B ⊆ [n] that C ′(A ∪ B) ≤
α · (C(A) + C(B)). Then, M is α-EFF.
Proof: Let Q be the set output by the sequential mech-
anism for v, and P be a set with optimum social cost.

SC (Q)
C(P ) +

∑
i/∈P vi

=
C ′(Q) +

∑
i∈P\Q vi +

∑
i/∈Q∪P vi

C(P ) +
∑
i∈Q\P vi +

∑
i/∈Q∪P vi

≤
C ′(Q) +

∑
i∈P\Q vi

C(P ) +
∑
i∈Q\P vi

≤
C ′(Q) +

∑
i∈P\Q vi

C(P ) + C(Q \ P )

The last line is due to weak monotonicity:
∑
i∈Q\P vi ≥∑

i∈Q\P ξi(Q) ≥ C ′(Q \ P ) ≥ C(Q \ P ). It remains to
be shown that

∑
i∈P\Q vi ≤ C ′(P ∪Q)− C ′(Q).

Denote by p1 < · · · < p` the players in P \Q. For each
i ∈ [`], let Ri be the set of remaining players in P ∪ Q
immediately before player pi is considered, i.e., pi ∈ Ri.
Then, vpi

< ξpi
(Ri) and

C ′(Ri) =
∑
j∈Ri

ξj(Ri)

= ξpi
(Ri) +

∑
j∈Ri+1

ξj(Ri)

≥ ξpi
(Ri) + C ′(Ri+1) ,

hence

∑
i∈P\Q

vi <
∑̀
i=1

ξpi
(Ri) ≤

∑̀
i=1

(C ′(Ri)− C(Ri+1))

≤ C ′(P ∪Q)− C ′(Q) .

Lemma: Effectively pairwise SP = 2-GSP.
Proof: Suppose {i, j} is a successful 2-GSP coalition
so that player j can further improve at b. Due to
the threshold property, this implies j /∈ Q(b) and
θ−j(b−j) < vi. Hence, also bj < vj and uj(b) = uj(v) =
0.
Since {i, j} is successful and player j does not im-
prove, we have ui(b) > ui(v). Due to SP, we also have
ui(v−j , bj) = ui(b).
Consequently, {i, j} is also successful at v when bidding
vi and bj , respectively. Clearly, neither i nor j could
further improve afterwards. �

2.10. Randomization

Beispiel: GSP in expectation 6= randomization over
deterministic GSP mechanisms. Consider two 2-player
mechanisms M and M ′: Define M by θ1(b) = 10 and

θ2(b) =

{
1 if b1 ≤ 10
10 if b1 > 10.

Note that M is GSP and 1-BB w.r.t. supermodular
costs, C({1}) = 10, C({2}) = 1, C({1, 2}) = 20. Sim-
ilarly, let mechanisms M ′ equal to M with the roles of
the two players swapped.
Consider now the randomized mechanism that chooses
M and M ′ with probability 1

2 each. Suppose v =
(11, 11). The expected utility is 1 for each player. How-
ever, b = (5, 5) gives an expected utility of 5 for each
player.
Note: Counter examples are possible where players in-
crease their bids, and for two-price mechanisms: Con-
sider ξ defined by:

1
2 1
2 1 1

8
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Consider a randomization over all 3! orders. Suppose
v = (2− ε, 2− ε, 2− ε). Then the expected utilities are
u(v) = ( 1−ε

3 , 1−ε
3 , 1−ε

3 ). However, with b = (2, 2, 2), we
have u(b) = (2

3 − ε,
2
3 − ε,

2
3 − ε).

2.11. General-Demand Cost Sharing

WGSP general-demand mechanisms were given by:

• Moulin (1999): Incremental mechanisms for super-
modular costs and increasing marginal costs

• Devanur et al. (2005): Mechanisms for multicover, a
generalization of the set cover cost-sharing problem,

• Mehta et al. (2007): Acyclic mechanisms

Note: In general, incremental mechanisms w.r.t. super-
modular are not GSP:

S 1 2 3 1, 2 1, 3 2, 3 1, 2, 3

C(S) 1 1 1 3 2 3 5

and v = (1, 1.5, 1.5). Then Q(v) = {2} and x(v) =
(0, 2, 0). Now for b = (1.5, 1.5, 1.5), we have Q(b) =
{1, 3} and x(b) = (1, 0, 1).

3. Outside the Realm of Cost Sharing

3.1. “Incentive-compatible” approximation algo-
rithms

Scheduling on unrelated machines: The type of each ma-
chine i ∈ [n] is specified by a vector of processing times
tij for each job j ∈ [m]. An alternative is an alloca-
tion a ∈ {0, 1}n×m. We have ti(a) = −

∑
i∈[m] tijaij =

−〈ti,a〉.
Suppose t, t′ are i-variants and let a := q(t) 6= q(t′) =:
b. Weak monotonicity implies 〈ti − t′i,a− b〉 ≤ 0.

3.2. k-Strong Price of Anarchy

Andelman et al. (2007) define a k-strong equilibrium as
a state where no coalition of up to k player can strictly
improve the utility of all members by a pure deviation.
They scheduling of selfish jobs on identical and unre-
lated machines.
Theorem: In a job scheduling game, a strategy profile
with lexicographically minimal (sorted) load vector is a
k-strong equilibrium.
Note: This theorem (i.e., existence of strong equilibria)
crucially relies on that all players strictly improve. For
example, consider the following setting: 2 identical ma-
chines, 3 identical jobs. Suppose two jobs share one ma-
chine, and the third job is the the other machine. Now
pair of jobs on the same machine can improve when only
one switches to the other machine.
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