
A congestion game is specified by a directed graph G = (V,E), latency functions `e :
R≥0 → R≥0 for all e ∈ E, the number of players n, designated source and target nodes
si, ti ∈ V as well as the amount of traffic di for each player i ∈ [n].
A flow f is a Nash equilibrium if each player’s flow f i is a solution to the following

optimization problem, where ∆v := 0 for v ∈ V \ {si, ti} and ∆si := −di, ∆ti := di:

min
∑
e∈E

f ie · `e(fe)

s.t.
∑

(u,v)=e∈E

f ie −
∑

(v,w)=e∈E

f ie = ∆v ∀v ∈ V

f ie ≥ 0 ∀e ∈ E

In order to make the Karush-Kuhn-Tucker conditions explicit, we define the following func-
tions: For each e ∈ E, let γie(f

i) := −f ie. For each v ∈ V , let

θiv(f
i) :=

∑
(u,v)=e∈E

f ie −
∑

(v,w)=e∈E

f ie −∆v .

The above problem can then be rewritten as

min Ci(f i|f−i)
s.t. θiv(f

i) = 0 ∀v ∈ V
γie(f

i) ≤ 0 ∀e ∈ E

Since Slater’s condition is trivially fulfilled (i.e., there exists a feasible solution for which
all inequality constraints are strictly satisfied), the Karush-Kuhn-Tucker conditions are
necessary and sufficient. In particular: Suppose f is a Nash flow. Then for each player
i ∈ [n] there are αi ∈ RE and βi ∈ RV so that:

• Primal feasibility: θiv(f
i) = 0 and γie(f

i) ≤ 0

• Dual feasibility: αie ≥ 0

• Complementary Slackness: αe · f ie = 0

• Stationarity:

∇Ci(f i|f−i) +
∑
e∈E

αie · ∇γie(f i) +
∑
v∈V

βiv · ∇θiv(f i) = 0 (0.1)

Note that the partial derivatives are with respect to fe, for e ∈ E.

In the following, we give a sufficient condition so that an atomic splittable congestion
game has a unique Nash flow. Define `ie(f e) := `e(fe)+f ie ·`′e(fe) and φe(f e) := (`ie(f e))i∈[n].
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Lemma 0.1. Suppose for all flows f 6= f̃ it holds that
∑

e∈E〈f e−f̃ e, φe(f e)−φe(f̃ e)〉 > 0.
Then, the Nash equilibrium is unique.

Proof. We start by observing that for any linear function κ : Rm → R and any two points
a, b ∈ Rm it holds that 〈b− a,∇κ(a)〉 = κ(b)− κ(a).
Now by way of contradiction, assume that both f 6= f̃ are Nash equilibria. Applying

the stationarity condition to f i and and subsequently multiplying the left side of (0.1) by
(f̃ i − f i) yields

〈f̃ i − f i, (`ie(f e))e∈E〉+
∑
e∈E

αie · 〈f̃ i − f i,∇γie(f i)〉+
∑
v∈V

βiv · 〈f̃ i − f i,∇θiv(f i)〉

=
∑
e∈E

(f̃ ie − f ie) · `ie(f e) +
∑
e∈E

αie · (γie(f̃ i)− γie(f i)) +
∑
v∈V

βiv · (θiv(f̃ i)− θiv(f i))

=
∑
e∈E

(f̃ ie − f ie) · `ie(f e)− αie · f̃ ie .

Here, the first equality is due to the above observation and the second equality follows
immediately from primary feasibility and complimentary slackness. Now doing the same
for f̃ and summing over all i ∈ [n], we get:∑

i∈[n]

∑
e∈E

(f̃ ie − f ie) · (`ie(f e)− `ie(f̃ e))− αie · f̃ ie − α̃ie · f ie

≤
∑
e∈E

∑
i∈[n]

(f̃ ie − f ie) · (`ie(f e)− `ie(f̃ e))

= −
∑
e∈E
〈f e − f̃ e, φe(f e)− φe(f̃ e)〉 < 0 ,

where the first inequality follows from primary and dual feasibility, and the second inequality
follows from plugging in the assumption. This is in contradiction to the the fact that we
have only summed over zero-terms (0.1). ut

In the following, we give another, slightly stronger, sufficient condition. Here, we let
Dφ(x) denote the derivative (i.e., Jacobian) of the mapping φ at x.

Lemma 0.2. Suppose that for all e ∈ E, the Jacobian Dφe(f e) is positive definite. Then,
the Nash equilibrium is unique.

Proof. Let f 6= f̃ be two feasible flows. Define the path ω(z) := zf + (1 − z)f̃ , where
z ∈ [0, 1]. By definition of the derivative and applying the chain rule,

dφe(ωe(z))

dz
= Dφe(ωe(z)) ·

dωe(z)

dz
= Dφe(ωe(z)) · (f e − f̃ e) .
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Integrating the left and the right sides gives

φe(f e)− φe(f̃ e) =

∫ 1

0
Dφe(ωe(z)) · (f e − f̃ e) dz .

Finally, multiplying with (f e − f̃ e)T yields

〈f e − f̃ e, φe(f e)− φe(f̃ e)〉 =

∫ 1

0
(f e − f̃ e)TDφe(ωe(z)) · (f e − f̃ e) dz

=
1

2
·
∫ 1

0
(f e − f̃ e)T (Dφe(ωe(z)) +Dφe(ωe(z))

T ) · (f e − f̃ e) dz

> 0 . ut

Note that

Dφe(f e) =

 ∂1`
1
e(f e) . . . ∂n`

1
e(f e)

...
...

∂1`
n
e (f e) . . . ∂n`

n
e (f e)

 =
(
(1 + δij) · `′e(fe) + f ie · `′′e(fe)

)
i,j∈[n]

where δ denotes the Kronecker delta. For instance, when all `e are affine functions fe 7→
aefe + be, then

Dφe(f e) = ae ·


2 1 . . . 1
1 2 1
...

. . .
...

1 . . . 1 2


︸ ︷︷ ︸

=:B

Some calculation shows that B is positive definite: Let x ∈ Rn \ 0. Then

xTBx =

n∑
i,j=1

xixjbi,j =

n∑
i=1

x2i +

(
n∑
i=1

xi

)2

> 0 .

(An alternative argument is that B is the sum of an identity matrix, which is positive
definite, and a matrix with the same value in all components, which is non-negativ definite.)
In the following, we prove a more general uniqueness result.

Lemma 0.3. Let a ∈ R≥0 and b ∈ Rn≥0 so that a +
∑

i bi >
√
n
∑
b2i . Define B =

(bi + bj)i,j∈[n]. Then it holds for every eigenvalue λ of B that λ > −a.

Proof. Define c :=
∑
bi and d :=

∑
b2i . Since B is the sum of two matrices of rank 1, the

rank of B is at most 2. Moreover, since B is a symmetric matrix, all eigenvalues are reals
and it suffices to show that all eigenvalues are non-negative. We consider three cases:
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• If the rank of B is 0, then b = 0 and the only eigenvalue of B is 0 >
√
nd− a ≥ −a.

• If the rank of B is 1, then the only non-zero eigenvalue of B is the trace of B, which
is exactly 2c > 0 ≥ −a.

• If the rank of B is 2, define 1n := (1, . . . , 1) ∈ Rn. Note that {1n, b} is a basis for
the vector space spanned by the columns of B. Suppose x 6= 0 is an eigenvector of
B. Then x = α · 1n + β · b for some constants α and β. Suppose the corresponding
non-zero eigenvalue is λ. Then, λ · x = Bx and B = b · 1Tn + 1n · bT , so we have

λ · (α · 1n + β · b) = b · 1Tn · α · 1n︸ ︷︷ ︸
=αn

+b · 1Tn · β · b︸ ︷︷ ︸
=βc

+1n · bT · α · 1n︸ ︷︷ ︸
=αc

+1n · bT · β · b︸ ︷︷ ︸
=βd

)

or, equivalently,

1n(λα− αc− βd) + b(λβ − αn− βc) = 0 .

Since 1n and b are linearly independent, this linear combination has to be trivial, i.e.,

α · (c− λ) + βd = 0 and αn+ β(c− λ) = 0 .

As not both α and β can be zero at the same time, the determinant of this linear
system of equations (with variables α and β) has to be zero:

(c− λ)2 − dn = 0 or, equivalently, λ = c±
√
nd .

By assumption, we have c−
√
nd > −a, which completes the proof. ut

Theorem 0.4. Suppose that all edges e ∈ E have polynomial latency functions, i.e., `e(fe) =∑d
k=0 ae,k · (fe)k where d < 3n+1

n−1 . Then, the Nash equilibrium is unique.

Proof. We have

Dφe(f e) =

(
(1 + δij) ·

d∑
k=1

k · ae,k · (fe)k−1 + f ie ·
d∑

k=2

k · (k − 1) · ae,k(fe)k−2
)
i,j∈[n]

=

d∑
k=1

k · ae,k · (fe)k−2
(
(1 + δij) · fe + (k − 1)f ie

)
i,j∈[n]

=
d∑

k=1

k · ae,k · (fe)k−2
((
fe + (k − 1) · f ie

)
i,j∈[n] + fe · In

)
︸ ︷︷ ︸

=:Ak

.
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Fix an arbitrary k ∈ [d]. Define b := (fe + (k − 1) · f ie)i∈[n] and B = (bi + bj)i,j∈[n]. For
the rest of the proof, it will be sufficient to show that

2fe +
∑
i

bi = (n+ k + 1) · fe >
√
n
∑

b2i . (0.2)

Then, according to Lemma 0.3, it holds for all eigenvalues λ of B that λ > −2fe. Hence,
the symmetric matrix (B + 2fe · In), which is twice the symmetric part of Ak, has only
strictly positive eigenvalues and is hence positive definite. Consequently, also Ak is positive
definite. Since k was chosen arbitrarily, Dφe(f e) is then a weighted sum of positive definite
matrices and hence positive definite itself.
Now in order to show (0.2) note that∑

i∈[n]

b2i =
∑
i∈[n]

(fe + (k − 1) · f ie)2

= n · (fe)2 + 2(k − 1)(fe)
2 + (k − 1)2

∑
i∈[n]

(f ie)
2

≤ n · (fe)2 + 2(k − 1)(fe)
2 + (k − 1)2(fe)

2

= (n+ k2 − 1)(fe)
2 .

Consequently, inequality (0.2) is fulfilled if (n+ k+ 1)2 > n(n+ k2− 1). This is equivalent
to k2(1− n) + 2k(n+ 1) + 3n+ 1 > 0 or (since k is non-negative)

k <
3n+ 1

n− 1
. ut

Clearly, d ≤ 3 is a sufficient condition for Theorem 0.4 to hold.
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