
The MADlib Analytics Library
or MAD Skills, the SQL

Caleb	Welton 	 	Florian	Schoppmann 	Christopher	Ré	

1	

MADlib

Scalable Machine Learning for BigData

2	

Traditional analytics pipeline

sample.csv	

Time-to-Insights	

Data	Prep	 DB	Extract	 DB	Import	spec.docx	 scores.csv	

3	

The MAD approach

Enterprise	Data	

RDBMS	 RDBMS	RDBMS	 RDBMS	

Time-to-Insights

Data	Prep	 Model	 Score	

Reduced	Data	

Movement	

Billions	of	rows	

in	minutes	

4	

MADlib in Action

Hospital	AdmiLance	Case	Study	

5	

MADlib in Action

Step	1:		

•  IdenOfy	high	risk	paOents	

Goal:	

•  High	risk	paOents	will	be	eligible	for	early	admiLance	

and	be	administered	preempOve	anObioOcs	

6	

MADlib in Action

Step	2:		

•  Build	cost	model	for	treatment	

y	

x	
Goal:	Goal:	

•  Predict	expected	cost	of	treatment	

•  With	and	without	early	admiLance.	

7	

MADlib in Action

Step	3:		

•  OpOmize	early	admiLance	based	on	risk	and	cost	model			

Goal:	

•  Overall	hospital	costs	will	be	minimized	and	paOents	

will	receive	beLer	care.	

8	

MADlib cycle of success

Value!	

IdenOfy	

Problem	

Use	Math	

Insights	

Why	didn’t	I	

think	of	that	

before?	

9	

The	MADlib	Vision	

•  Academic	and	industry	contribuOons	

•  Think	of	“CRAN	for	databases”	

– Repository	of	open-source	ML	algorithms	

– This	Ome	with	data	parallelism	in	mind	

•  Open-Source	Framework	

Eigen	BSD	License	
10	

Simple	Example:	

Ordinary	Least	Squares	

SELECT (linregr(y, x)).* FROM data; !

-[RECORD 1]+------------------------ !

coef | {1.7307,2.2428} !

r2 | 0.9475 !

std_err | {0.3258,0.0533} !

t_stats | {5.3127,42.0640} !

p_values | {6.7681e-07,4.4409e-16} !

condition_no | 169.5093!

SELECT y, x[1] AS x1, x[2] AS x2 FROM data!
 y | x1 | x2 !
-------+------+----- !
 10.14 | 0 | 0.3 !
 11.93 | 0.69 | 0.6 !
 13.57 | 1.1 | 0.9 !
 14.17 | 1.39 | 1.2 !
 15.25 | 1.61 | 1.5 !
 16.15 | 1.79 | 1.8 !

X y

y	

x	

11	

Linear	Algebra	in	the	Database	

XT

X

XT

y

-1

XTX XTy

()

︸ ︷︷ ︸ ︸ ︷︷ ︸

β̂ = (X T
X)−1X T

y

x
i
x
i

T

i=1

n

∑ x
i
y
ii=1

n

∑
12	

Basic	Building	Block:	

User-Defined	Aggregates	

AggregaOon	phase	1	on	each	node:	

1.  IniOalize:	

2.  TransiOon	for	all	rows:	

	

3.  Send	(A,b)	

	

x	 y	

(1,0,3,…,5)	 3	

(-2,4,5,…,2)	 2	

…	 …	

(A,b) = (0,0)

(A,b) = (A,b)+ (x ⋅ xT ,x ⋅ y)
  

map	

reduce	

(A,b)	

…	
AggregaOon	phase	2	on	master	node:	

1.  Merge:		

2.  Finalize:	 β̂ = solve(A,b) = A−1
⋅b

(A,b) = (A,b)+ (A,b)

13	

Problem	solved?	

No	–	not	yet.	

14	

ML	Algorithms	Based	on	SQL?	

•  Four	RepresentaOve	Challenges	

1.  Lack	of	portable	mulO-pass	iteraOons	

2.  Roots	in	first-order	logic	

3.  Lack	of	language	support	for	linear	algebra	

4.  Extensible	SQL	limited	to	small	working	sets	

Need:	

•  AbstracOon	Layers	

•  A	few	compromises	for	user	interface	

15	

1.	Lack	of	portable	mulO-pass	

iteraOons	

•  WITH RECURSIVE	not	reliable	basis	for	

portability	

•  User-defined	driver	

funcOons	in	Python	

– Outer	loops	not	

performance-criOcal	

•  Compromise:	

Different	user	interface	

CREATE TEMP TABLE temp !

INSERT INTO temp SELECT
step(...) FROM ... !

SELECT converged(...)
FROM temp, ... !

SELECT result(...) !
FROM temp!

false	

true	

16	

2.	Roots	in	first-order	logic	

•  Queries	need	be	cognizant	of	database	objects	

•  Emulate	higher-order	logic	by:	
–  dynamic	execuOon	of	templated	SQL	

–  abstracOon-layer	support	

	

•  Example:	Distance	or	kernel	funcOons	

•  On	PostgreSQL,	use	of	type	REGPROC	

FunctionHandle dist !
 = args[0].getAs<FunctionHandle>(); !
return dist(x, y);	

17	

3.	Lack	of	language	support	for	

linear	algebra	

•  C++	AbstracOon	Layer	uses	Eigen	

•  (Dense)	Vectors	and	matrices:	
DOUBLE PRECISION[]!

•  Example:	

AnyType!
solve::run(AnyType& args) { !
 MappedMatrix A = args[0].getAs<MappedMatrix>(); !
 MappedColumnVector b = args[1].getAs<MappedColumnVector>(); !
 !
 MutableMappedColumnVector x = allocateArray<double>(A.cols()); !
 x = A.colPivHouseholderQr().solve(b); !
 return x; !
} ! Performance:	

•  No	unnecessary	copying	

•  No	internal	type	conversion	

18	

4.	Extensible	SQL	limited	to	

small	working	sets	

•  Tables	only	portable	opOon	for	large	states	

•  Access	from	UDAs	slow	or	impossible	

•  Example:	k-means	benefits	from	explicit	point-to-
centroid	assignments	
–  ProblemaOc:	

UPDATE points SET centroid_id =
closest(state, coords)	

–  Requires	own	pass	

– Not	allowed	in	subqueries	

–  PostgreSQL	legacy	

19	

MADlib	Architecture	

RDBMS	Query	Processing	

(Greenplum,	PostgreSQL,	…)	

Low-level	AbstracBon	Layer	

(matrix	operaOons,	C++	to	RDBMS	type	

bridge,	…)	

RDBMS	

Built-in	

FuncBons	

User	Interface	

High-level	AbstracBon	Layer	

(iteraOon	controller,	convex	opOmizers,	...)	

Row-level	FuncBons	

(inner	loops	of	streaming	algorithms,	

convex	opOmizaOon	callbacks,	...)	

“Driver”	FuncBons	

(outer	loops	of	iteraOve	algorithms,	opOmizer	

invocaOons)	

C++	

Python	

Python	with	

templated	SQL	

SQL,	generated	

from	specificaOon	

20	

Anatomy	of	an	iteraOve	MADlib	module	

interState	=	Start(args)	

Repeat	

In	parallel	for	each	segment: 		

intraState	=	IniOalize(interState)	

For	each	row	

intraState	=	Transit(intraState,	row)	

For	each	intraState:	

intraState	=	Merge(oldIntraState,	intraState)	

interState	=	Finalize(intraState)	

UnBl	Converged(interState) 		

Return	End(interState)	

User-defined	

Aggregate	

User-defined	FuncOon	

Python	Driver	FuncOon	

User-defined	FuncOon	

21	

Performance	Trends	

•  Disk	I/O	is	not	always	

the	boLleneck	
•  Performance	tuning	is	

essenOal	

•  Overhead	for	single	

query	very	low	(fracOon	

of	a	second)	

•  Greenplum	achieves	

nearly	perfect	speedup	
0	

5	

10	

15	

20	

25	

30	

35	

40	

6	 12	 18	 24	

20	 40	 80	 160	

OLS	on	10	million	rows	(in	seconds)	

#	segments	

#	variables:	

22	

Current	Modules	

Data	Modeling	

Supervised	Learning	

•  Naive	Bayes	ClassificaOon	

•  Linear	Regression	

•  LogisOc	Regression	

•  Decision	Tree	

•  Random	Forest	

•  Support	Vector	Machines	

Unsupervised	Learning	

•  AssociaOon	Rules	

•  k-Means	Clustering	

•  SVD	Matrix	FactorizaOon	

•  Parallel	Latent	Dirichlet	
AllocaOon	

DescripOve	StaOsOcs	

Sketch-based	EsOmators	

•  CountMin	(Cormode-
Muthukrishnan)	

•  FM	(Flajolet-MarOn)	

• MFV	(Most	Frequent	Values)	

Profile	

QuanOle	

Support	

Array	
OperaOons	

Conjugate	
Gradient	

Sparse	
Vectors	

Probability	
FuncOons	

Feature	
ExtracOon	

InferenOal	StaOsOcs	

Hypothesis	tests	
23	

My	MADlib	Experience:		

A	TesBmonial.	

Christopher	Ré,	Wisconsin	 24	

Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng Arun Kumar Benjamin Recht Christopher Ré

Department of Computer Sciences
University of Wisconsin-Madison

{xfeng, arun, brecht, chrisre}@cs.wisc.edu

ABSTRACT

The increasing use of statistical data analysis in enterprise
applications has created an arms race among database ven-
dors to offer ever more sophisticated in-database analytics.

late 1990s and early 2000s, this brought a wave of data min
ing toolkits into the RDBMS. Several major vendors ar
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form from Greenplum [18], and several projects at majo

Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng Arun Kumar Benjamin Recht Christopher Ré

Department of Computer Sciences
University of Wisconsin-Madison

{xfeng, arun, brecht, chrisre}@cs.wisc.edu

ABSTRACT

The increasing use of statistical data analysis in enterprise
applications has created an arms race among database ven-
dors to offer ever more sophisticated in-database analytics.

late 1990s and early 2000s, this brought a wave of data min
ing toolkits into the RDBMS. Several major vendors ar
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form from Greenplum [18], and several projects at majo

Refining	Ideas	and	Code		

QA	from	GP	help	to	transiOon	

from	paper	to	deployed	code.	

ConversaOons	with	GP	(and	Oracle)	lead	us	to	

beLer	posiOon	our	SIGMOD12	paper	

Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng Arun Kumar Benjamin Recht Christopher Ré

Department of Computer Sciences
University of Wisconsin-Madison

{xfeng, arun, brecht, chrisre}@cs.wisc.edu

ABSTRACT

The increasing use of statistical data analysis in enterprise
applications has created an arms race among database ven-
dors to offer ever more sophisticated in-database analytics.

late 1990s and early 2000s, this brought a wave of data min
ing toolkits into the RDBMS. Several major vendors ar
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form from Greenplum [18], and several projects at majo

25	

MADlib	is	Open	Source	

Learning	&	Inference	run	on	(GP	or	Postgres)	+	MADLib	

Cri5cal:	it’s	free,	open,	and	we	can	modify	it	

hazy.cs.wisc.edu	&	www.youtube.com/HazyResearch	

Enhance	Wikipedia	

with	extracted	facts	

from	the	Web	

(50+TB	of	data)	

26	

TesOmonial	Summary	

MADlib	is	open	to	contribuOons	and	open	source	

27	

Questions?

hLp://madlib.net	

	

Caleb	Welton	

Caleb.Welton@emc.com	

	

Florian	Schoppmann	

Florian.Schoppmann@emc.com	

	

Christopher	Ré	

chrisre@cs.wisc.edu	

