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MADlib  

Scalable Machine Learning for BigData 

2	



Traditional analytics pipeline 

sample.csv	

Time-to-Insights	

Data	Prep	 DB	Extract	 DB	Import	spec.docx	 scores.csv	
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The MAD approach 

Enterprise	Data	

RDBMS	 RDBMS	RDBMS	 RDBMS	

Time-to-Insights 

Data	Prep	 Model	 Score	

Reduced	Data	

Movement	

Billions	of	rows	

in	minutes	
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MADlib in Action 

Hospital	AdmiLance	Case	Study	
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MADlib in Action 

Step	1:		

•  IdenOfy	high	risk	paOents	

Goal:	

•  High	risk	paOents	will	be	eligible	for	early	admiLance	

and	be	administered	preempOve	anObioOcs	
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MADlib in Action 

Step	2:		

•  Build	cost	model	for	treatment	

y	

x	
Goal:	Goal:	

•  Predict	expected	cost	of	treatment	

•  With	and	without	early	admiLance.	
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MADlib in Action 

Step	3:		

•  OpOmize	early	admiLance	based	on	risk	and	cost	model			

Goal:	

•  Overall	hospital	costs	will	be	minimized	and	paOents	

will	receive	beLer	care.	
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MADlib cycle of success 

Value!	

IdenOfy	

Problem	

Use	Math	

Insights	

Why	didn’t	I	

think	of	that	

before?	
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The	MADlib	Vision	

•  Academic	and	industry	contribuOons	

•  Think	of	“CRAN	for	databases”	

– Repository	of	open-source	ML	algorithms	

– This	Ome	with	data	parallelism	in	mind	

•  Open-Source	Framework	

Eigen	BSD	License	
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Simple	Example:	

Ordinary	Least	Squares	

# SELECT (linregr(y, x)).* FROM data; !

-[ RECORD 1 ]+------------------------ !

coef         | {1.7307,2.2428} !

r2           | 0.9475 !

std_err      | {0.3258,0.0533} !

t_stats      | {5.3127,42.0640} !

p_values     | {6.7681e-07,4.4409e-16} !

condition_no | 169.5093!

# SELECT y, x[1] AS x1, x[2] AS x2 FROM data!
   y   |  x1  | x2  !
-------+------+----- !
 10.14 |    0 | 0.3 !
 11.93 | 0.69 | 0.6 !
 13.57 |  1.1 | 0.9 !
 14.17 | 1.39 | 1.2 !
 15.25 | 1.61 | 1.5 !
 16.15 | 1.79 | 1.8 !

X y 

y	

x	
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Linear	Algebra	in	the	Database	
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Basic	Building	Block:	

User-Defined	Aggregates	

AggregaOon	phase	1	on	each	node:	

1.  IniOalize:	

2.  TransiOon	for	all	rows:	

	

3.  Send	(A,b)	

	

x	 y	

(1,0,3,…,5)	 3	

(-2,4,5,…,2)	 2	

…	 …	

(A,b) = (0,0)

(A,b) = (A,b)+ (x ⋅ xT ,x ⋅ y)
  

map	

reduce	

(A,b)	

…	
AggregaOon	phase	2	on	master	node:	

1.  Merge:		

2.  Finalize:	 β̂ = solve(A,b) = A−1
⋅b

(A,b) = (A,b)+ (A,b)
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Problem	solved?	

No	–	not	yet.	
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ML	Algorithms	Based	on	SQL?	

•  Four	RepresentaOve	Challenges	

1.  Lack	of	portable	mulO-pass	iteraOons	

2.  Roots	in	first-order	logic	

3.  Lack	of	language	support	for	linear	algebra	

4.  Extensible	SQL	limited	to	small	working	sets	

Need:	

•  AbstracOon	Layers	

•  A	few	compromises	for	user	interface	
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1.	Lack	of	portable	mulO-pass	

iteraOons	

•  WITH RECURSIVE	not	reliable	basis	for	

portability	

•  User-defined	driver	

funcOons	in	Python	

– Outer	loops	not	

performance-criOcal	

•  Compromise:	

Different	user	interface	

CREATE TEMP TABLE temp !

INSERT INTO temp SELECT 
step(...) FROM ... !

SELECT converged(...) 
FROM temp, ... !

SELECT result(...) !
FROM temp!

false	

true	
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2.	Roots	in	first-order	logic	

•  Queries	need	be	cognizant	of	database	objects	

•  Emulate	higher-order	logic	by:	
–  dynamic	execuOon	of	templated	SQL	

–  abstracOon-layer	support	

	

•  Example:	Distance	or	kernel	funcOons	

•  On	PostgreSQL,	use	of	type	REGPROC	

FunctionHandle dist !
    = args[0].getAs<FunctionHandle>(); !
return dist(x, y);	
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3.	Lack	of	language	support	for	

linear	algebra	

•  C++	AbstracOon	Layer	uses	Eigen	

•  (Dense)	Vectors	and	matrices:	
DOUBLE PRECISION[]!

•  Example:	

AnyType!
solve::run(AnyType& args) { !
    MappedMatrix A = args[0].getAs<MappedMatrix>(); !
    MappedColumnVector b = args[1].getAs<MappedColumnVector>(); !
    !
    MutableMappedColumnVector x = allocateArray<double>(A.cols()); !
    x = A.colPivHouseholderQr().solve(b); !
    return x; !
} ! Performance:	

•  No	unnecessary	copying	

•  No	internal	type	conversion	

18	



4.	Extensible	SQL	limited	to	

small	working	sets	

•  Tables	only	portable	opOon	for	large	states	

•  Access	from	UDAs	slow	or	impossible	

•  Example:	k-means	benefits	from	explicit	point-to-
centroid	assignments	
–  ProblemaOc:	

UPDATE points SET centroid_id = 
closest(state, coords)	

–  Requires	own	pass	

– Not	allowed	in	subqueries	

–  PostgreSQL	legacy	
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MADlib	Architecture	

RDBMS	Query	Processing	

(Greenplum,	PostgreSQL,	…)	

Low-level	AbstracBon	Layer	

(matrix	operaOons,	C++	to	RDBMS	type	

bridge,	…)	

RDBMS	

Built-in	

FuncBons	

User	Interface	

High-level	AbstracBon	Layer	

(iteraOon	controller,	convex	opOmizers,	...)	

Row-level	FuncBons	

(inner	loops	of	streaming	algorithms,	

convex	opOmizaOon	callbacks,	...)	

“Driver”	FuncBons	

(outer	loops	of	iteraOve	algorithms,	opOmizer	

invocaOons)	

C++	

Python	

Python	with	

templated	SQL	

SQL,	generated	

from	specificaOon	
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Anatomy	of	an	iteraOve	MADlib	module	

interState	=	Start(args)	

Repeat	

In	parallel	for	each	segment: 		

intraState	=	IniOalize(interState)	

For	each	row	

intraState	=	Transit(intraState,	row)	

For	each	intraState:	

intraState	=	Merge(oldIntraState,	intraState)	

interState	=	Finalize(intraState)	

UnBl	Converged(interState) 		

Return	End(interState)	

User-defined	

Aggregate	

User-defined	FuncOon	

Python	Driver	FuncOon	

User-defined	FuncOon	
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Performance	Trends	

•  Disk	I/O	is	not	always	

the	boLleneck	
•  Performance	tuning	is	

essenOal	

•  Overhead	for	single	

query	very	low	(fracOon	

of	a	second)	

•  Greenplum	achieves	

nearly	perfect	speedup	
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Current	Modules	

Data	Modeling	

Supervised	Learning	

•  Naive	Bayes	ClassificaOon	

•  Linear	Regression	

•  LogisOc	Regression	

•  Decision	Tree	

•  Random	Forest	

•  Support	Vector	Machines	

Unsupervised	Learning	

•  AssociaOon	Rules	

•  k-Means	Clustering	

•  SVD	Matrix	FactorizaOon	

•  Parallel	Latent	Dirichlet	
AllocaOon	

DescripOve	StaOsOcs	

Sketch-based	EsOmators	

•  CountMin	(Cormode-
Muthukrishnan)	

•  FM	(Flajolet-MarOn)	

• MFV	(Most	Frequent	Values)	

Profile	

QuanOle	

Support	

Array	
OperaOons	

Conjugate	
Gradient	

Sparse	
Vectors	

Probability	
FuncOons	

Feature	
ExtracOon	

InferenOal	StaOsOcs	

Hypothesis	tests	
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My	MADlib	Experience:		

A	TesBmonial.	

Christopher	Ré,	Wisconsin	 24	



Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng Arun Kumar Benjamin Recht Christopher Ré

Department of Computer Sciences
University of Wisconsin-Madison

{xfeng, arun, brecht, chrisre}@cs.wisc.edu

ABSTRACT

The increasing use of statistical data analysis in enterprise
applications has created an arms race among database ven-
dors to offer ever more sophisticated in-database analytics.

late 1990s and early 2000s, this brought a wave of data min
ing toolkits into the RDBMS. Several major vendors ar
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form from Greenplum [18], and several projects at majo
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Refining	Ideas	and	Code		

QA	from	GP	help	to	transiOon	

from	paper	to	deployed	code.	

ConversaOons	with	GP	(and	Oracle)	lead	us	to	

beLer	posiOon	our	SIGMOD12	paper	
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ing toolkits into the RDBMS. Several major vendors ar
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form from Greenplum [18], and several projects at majo
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MADlib	is	Open	Source	

Learning	&	Inference	run	on	(GP	or	Postgres)	+	MADLib	

Cri5cal:	it’s	free,	open,	and	we	can	modify	it	

hazy.cs.wisc.edu	&	www.youtube.com/HazyResearch	

Enhance	Wikipedia	

with	extracted	facts	

from	the	Web	

(50+TB	of	data)	
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TesOmonial	Summary	

MADlib	is	open	to	contribuOons	and	open	source	
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Questions? 

hLp://madlib.net	

	

Caleb	Welton	

Caleb.Welton@emc.com	

	

Florian	Schoppmann	

Florian.Schoppmann@emc.com	

	

Christopher	Ré	

chrisre@cs.wisc.edu	


