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Abstract

Congestion games are multi-player games in which players’ costs are additive

over a set of resources that have anonymous cost functions, with pure strate-

gies corresponding to certain subsets of resources. In a splittable congestion

game, each player can choose a convex combination of subsets of resources. We

characterize the worst-case price of anarchy — a quantitative measure of the

inefficiency of equilibria — in splittable congestion games. Our approximation

guarantee is parameterized by the set of allowable resource cost functions, and

degrades with the “degree of nonlinearity” of these cost functions. We prove that

our guarantee is the best possible for every set of cost functions that satisfies

mild technical conditions. We prove our guarantee using a novel “local smooth-

ness” proof framework, and as a consequence the guarantee applies not only

to the Nash equilibria of splittable congestion games, but also to all correlated

equilibria.
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1. Introduction

Congestion games play a central role in the theory of worst-case approxi-

mation guarantees for game-theoretic equilibria. They are expressive enough to

capture a number of otherwise unrelated applications — including routing, net-

work design, oligopoly models, and the migration of species [2, 18, 19, 24, 28] —

yet structured enough to permit interesting theoretical guarantees. In the stan-

dard model introduced by Rosenthal [24], there is a ground set of resources, and

each player selects a subset of them (e.g., a path in a network). Each resource

has a univariate cost function that depends on the load induced by the players

that use it, and each player strives to minimize the sum of the resources’ costs in

its chosen strategy (given the strategies chosen by the other players). Because

of congestion externalities — that is, because each player ignores the extra cost

its action imposes on the other players — Nash equilibria of congestion games

typically do not minimize the joint cost of the players.

We study the splittable variant of congestion games, where each player has

a weight wi and a list of available strategies (each a subset of resources), and

each player chooses how to split fractionally its weight over its strategies.3 The

splittable model is more appropriate than the traditional “unsplittable” model

in some applications, such as multipath routing in networks. Indeed, in the

computer networking literature, the splittable model was studied a decade prior

to the unsplittable model, beginning with [22]. The splittable model also arises

naturally when studying coalitions of players in nonatomic congestion games,

where there is a continuum of players [7, 8, 14, 16].

The goal of this paper is to quantify the inefficiency of Nash equilibria in

splittable congestion games. To measure inefficiency, we use the price of anarchy

3Deterministically spreading weight over multiple strategies is not equivalent to probabilis-

tically selecting a single strategy, except in the trivial case of load-independent resource cost

functions.
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Figure 1: The price of anarchy grows with the “degree of nonlinearity” of the resource cost

functions.

(POA) [17]: the worst-case ratio between the sum of players’ costs in a Nash

equilibrium and in a minimum-cost outcome. To develop intuition for the POA

in congestion games, we informally review a simple example, essentially due to

Pigou [23]. Consider the two-vertex, two-edge network shown in Figure 1(a).

Resources correspond to edges, and strategies correspond to s-t paths. Assume

that there is a very large number of players, each with negligible weight, with

the total weight of all players summing to 1. Each edge is labeled with a cost

function, describing the cost incurred by traffic on that edge, as a function of

the sum of the weights of the players on that edge. With negligible-size players,

the lower edge is a dominant strategy for every player. Thus, there is a Nash

equilibrium in which the average player cost is 1. On the other hand, in an

outcome where the players are split equally between the two edges, the average

player cost is only 1
2 · 1

2 + 1
2 · 1 = 3

4 . For these reasons, the POA of this game is

at least 4
3 .

Now suppose we replace the previously linear cost function c(x) = x on the

lower edge with the highly nonlinear one c(x) = xp for p large (Figure 1(b)).

There is still a Nash equilibrium with average cost 1. In the outcome with

minimum average player cost, there is a small ε fraction of the players on the

upper edge, and the average cost is ε + (1 − ε)p+1. Since this approaches 0 as

ε tends to 0 and p tends to infinity, the POA grows without bound as p grows

large.
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The first point of the previous example is that Nash equilibria are subop-

timal even in extremely simple splittable congestion games. Of course, there

might be examples (with linear cost functions, say) with POA even larger than

that in Figure 1(a) due to more complicated strategy sets or to non-negligible

player weights. The second point of the example above is that the worst-case

inefficiency of Nash equilibria seems to grow with the “degree of nonlinearity”

of the resource cost functions. Thus, we expect an optimal upper bound on the

worst-case POA of splittable congestion games to be parameterized by the set

of allowable resource cost functions.

1.1. Our Results

In this paper, we resolve the worst-case price of anarchy in splittable con-

gestion games. Prior to this work, no tight bounds on the POA in splittable

congestion games were known, even for the simplest non-trivial special case of

affine cost functions. By contrast, tight bounds for essentially all classes of cost

functions were proved some years ago for both nonatomic congestion games

(with a continuum of players, as in Figure 1) and standard (unsplittable) con-

gestion games [1, 4, 9, 27, 29]. Our bounds imply that the worst-case POA in

splittable congestion games is reasonably close to 1 provided the cost functions

are “not too nonlinear”. The degree of nonlinearity that can be tolerated to obey

a target upper bound on the POA is qualitatively smaller than in nonatomic

congestion games, but is qualitatively larger than in standard (unsplittable)

congestion games. Thus, with respect to the worst-case POA measure, allowing

non-negligible-sized players to choose fractional strategies substantially reduces

inefficiency.

Technically, we make two distinct contributions. On the upper-bound side,

we define the framework of “local smoothness”, which provides a sufficient condi-

tion for a game to have a bounded POA. This framework refines the smoothness

paradigm introduced in [27] for games with convex strategy sets, intuitively by

requiring certain inequalities only for nearby pairs of outcomes, rather than for

all pairs of outcomes as in [27]. While the smoothness paradigm in [27] provably
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cannot establish tight bounds on the POA in splittable congestion games, we

show that local smoothness arguments can. Further, we prove the following

“extension theorem”: every POA bound derived via local smoothness applies

automatically, without any quantitative degradation, to every correlated equi-

librium, and hence also to every mixed Nash equilibrium, of the game.

Extending POA bounds to more general equilibrium concepts is important

because it weakens the rationality assumptions under which the bounds are

valid. An upper bound that applies only to pure Nash equilibria presumes that

players reach one. A bound that applies more generally to correlated equilibria

does not require players to converge to anything: if a game is played repeatedly

and each player has vanishing time-averaged “swap regret” [11, 15], then the

bound applies to their time-averaged cost.4

Our second contribution is a general lower bound. For a set L of allowable

resource cost functions, we denote by γ(L) the smallest upper bound on the

POA that is provable via a local smoothness argument. We prove that for every

set L that satisfies mild technical conditions, the worst-case POA in splittable

congestion games with cost functions in L is exactly γ(L). Thus, the worst-case

POA of pure Nash equilibria, mixed Nash equilibria, and correlated equilibria

coincide in such games.

The technical challenge in proving our lower bound stems from its generality:

we need to exhibit a worst-case splittable congestion game for a set L of cost

functions without knowing anything about L! Our high-level approach is to

exhibit an example for which all of the inequalities used in the upper bound

proof are tight, in the spirit of “complementary slackness” arguments in linear

programming. This goal translates to a labyrinth of restrictions on a candidate

worst-case splittable congestion game — on the allowable cost functions, on the

resource loads in equilibrium and optimal outcomes, and on the relative use of

4The blunter “smoothness framework” in [27] yields upper bounds that apply even more

generally to the coarse correlated equilibria [12, 20] of the game; this is not always the case

for local smoothness proofs (Example 3.3).
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Atomic

Atomic unsplittable

Degree splittable (weighted) [1] Nonatomic [29]

1 1.500 2.618 1.333

2 2.549 9.909 1.626

3 5.063 47.82 1.896

4 11.09 277.0 2.151

5 26.32 1,858 2.394

6 66.88 14,099 2.630

7 180.3 118,926 2.858

8 512.0 1,101,126 3.081

d ( 1+
√
d+1

2 )d+1 Θ( d
log d )d+1 Θ( d

log d )

Table 1: The price of anarchy in the special case of polynomial cost functions with nonnegative

coefficients. For splittable congestion games, the lower bounds are contributed by the present

work. The upper bound of 3
2
for affine cost functions was first proved by Cominetti et al. [8].

For higher-degree polynomials, we give the first closed-form POA upper bounds, essentially

matching the numerical upper bounds computed by Harks [14].

a resource by different players in an equilibrium. Nevertheless, we show that

all of these conditions can be met simultaneously and thus there are splittable

congestion games with POA arbitrarily close to our upper bound of γ(L).

Table 1 illustrates our exact bounds for the special case of bounded-degree

polynomials with non-negative coefficients. The necessary calculations are not

immediately obvious and are given in Section 6. The worst-case price of anarchy

in splittable congestion games is generally strictly larger than that in nonatomic

congestion games (with a continuum of players) and strictly less than that in

standard (unsplittable) congestion games.
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1.2. Related Work

We next describe the prior research that is most relevant to the present

work. See [25, §4.8] for the history of and many more references on splittable

congestion games.

Splittable congestion games seem more difficult to reason about than other

congestion game models. For example, while the existence of pure Nash equi-

libria in such games was established early on via fixed-point arguments [13, 22],

Bhaskar et al. [3] showed only recently that such equilibria need not be unique.

Splittable congestion games also exhibit counterintuitive behavior, like the fact

that fusing two players into one — seemingly, increasing the amount of coop-

eration in the game — can increase the cost of a game’s Nash equilibrium [7].

Finally, two independent proofs claimed that the worst-case price of anarchy in

splittable congestion games is never worse than that in nonatomic congestion

games [10, 26]. Cominetti et al. [8] showed, however, that these proofs are valid

only in symmetric games — where all players have the same weight and the

same set of strategies — and adapted an example in [7] to refute the general

claims.

The first upper bounds on the POA in general splittable congestion games

were given by Cominetti et al. [8]. These bounds are derived using a special case

of our local smoothness framework in which one of our two parameters (λ in

Definition 3.1) is fixed at 1. This restricted approach yields finite upper bounds

on the worst-case POA only for cost functions that are polynomials with degree

at most 3 and nonnegative coefficients — bounds of 3
2 , 2.564, and 7.826 for

affine, quadratic, and cubic cost functions, respectively. Harks [14] showed that

allowing the parameter λ to vary yields significantly better POA bounds. The

generic upper bound framework in [14] is equivalent to ours, though it produces

bounds with a more complicated form. The simplified form derived here per-

mits the first closed-form expressions for the POA for polynomial cost functions

with nonnegative coefficients and, more importantly, enables the construction

of matching lower bounds for all classes of allowable cost functions that satisfy

mild technical conditions.
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Prior to our work, there were no upper bounds on the POA of splittable

congestion games for any equilibrium concept more general than pure Nash

equilibria.

The best lower bounds on the POA that were known previously follow from

counterexamples in Cominetti et al. [8]. For polynomials with nonnegative co-

efficients, these lower bounds grow linearly with the maximum degree d; for

example, they are 1.343, 1.67, 1.981, 2.287 for d = 1, 2, 3, 4, respectively. Our

tight lower bounds are exponentially larger in the degree d.

1.3. Paper Organization

Section 2 formally defines splittable congestion games, the equilibrium con-

cepts that we study, and the price of anarchy. Section 3 defines “local smoothness

proofs” for games with convex strategy sets, shows that such proofs yield upper

bounds on the price of anarchy of correlated equilibria, and that these upper

bounds do not generally apply to all coarse correlated equilibria. Section 4 in-

stantiates this general framework for the special case of splittable congestion

games, thereby deriving a generic POA upper bound that is parameterized by

the set of allowable resource cost functions. Section 5 constructs families of split-

table congestion games and pure Nash equilibria in them to show that the POA

upper bound in Section 4 is tight for every set of cost functions that satisfies

mild technical conditions. Section 6 supplies the calculations necessary to derive

closed-form expressions for the worst-case POA in splittable congestion games

with resource cost functions that are polynomials with nonnegative coefficients

(cf., Table 1). Section 7 concludes. The Appendix simplifies and strengthens the

lower bound construction of Section 5 for specific classes of allowable resource

cost functions, such as monomials.

2. The Model

Splittable Congestion Games. In an (atomic) splittable congestion game, a set

E of resources has to be shared between n ∈ N players. Each resource e ∈ E
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has a load-dependent cost, defined by its cost function `e : R≥0 → R≥0. Each

player i ∈ [n] := {1, . . . , n} has a set Pi ⊆ 2E \ ∅ of basic strategies available.

A fractional strategy of player i is a distribution of its weight wi ∈ R>0 among

the basic strategies available to it, i.e., player i’s set of (fractional) strategies is

Si := {~xi ∈ RPi

≥0 |
∑
p∈Pi

xip = wi}. A strategy profile is a vector ~x = (~xi)i∈[n]

of all players’ strategies. We sometimes call a fractional strategy that uses only

one basic strategy a pure strategy.

Resource Cost Functions. Following standard terminology, we say a cost func-

tion ` is semi-convex if x · `(x) is convex. For a non-decreasing function `, this

assumption is weaker than convexity, and is almost always satisfied in concrete

applications of congestion games. In this work, we always assume that cost

functions are non-decreasing, continuously differentiable, and semi-convex. The

latter two conditions enable a useful characterization of Nash equilibria; see (2),

below. We say that a set of cost functions L is non-trivial if it contains at least

one function that is not everywhere zero, and scale-invariant if ` ∈ L implies

that σ · `(τ · x) ∈ L for every σ, τ > 0. Scale-invariance means that the set of

allowable functions is invariant under changes in the units of measurement.

Load. Given a strategy profile ~x and a resource e ∈ E, we define xie :=
∑
p∈Pi : e∈p x

i
p

as the load player i puts on resource e and xe :=
∑
i∈[n] x

i
e as the total load on

e. We also use the abbreviating notation ~xe := (xie)i∈[n].

Cost and Equilibria. Given a strategy profile ~x, the cost of player i is defined

as ci(~x) :=
∑
e∈E x

i
e · `e(xe). The overall measure for the quality of a strategy

profile ~x is its social cost

SC(~x) :=
∑
i∈[n]

ci(~x) .

By a reversal of sums, we can also write SC(~x) =
∑
e∈E xe · `e(xe).

We are interested in equilibria of the game, i.e., states where no player can

reduce its (expected) cost by unilaterally deviating. To make this notion precise,

we consider the following hierarchy of equilibrium concepts (see, e.g., [31] for
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more details and context). A (pure) Nash equilibrium — the most restrictive

concept — is a strategy profile ~x such that for every player i and every fractional

strategy ~yi it holds that ci(~x) ≤ ci(~y
i, ~x−i), where ~x−i denotes the strategies

chosen by the players other than i in ~x. Pure Nash equilibria always exist in

splittable congestion games [13, 22].

A mixed Nash equilibrium is a profile of mixed strategies — stochastically

independent probability distributions P1, . . . , Pn over S1, . . . , Sn — such that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(~y
i, ~x−i)] (1)

for all players i and all fractional strategies ~yi ∈ Si, where P denotes the product

distribution over strategy profiles induced by P1, . . . , Pn. Pure Nash equilibria

are the mixed Nash equilibria in which no player randomizes.

A (not necessarily product) distribution P over the set of strategy profiles is

a correlated equilibrium if for all players i and all functions δ : Si → Si it holds

that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(δ(~x
i), ~x−i)] .

Mixed Nash equilibria correspond to the correlated equilibria that are product

distributions.

Finally, such a distribution P is a coarse correlated equilibrium if (1) holds for

all players i and all strategies ~yi ∈ Si. Every correlated equilibrium is a coarse

correlated equilibrium, and the converse is false in general (e.g., Example 3.3).

Characterization of Nash Equilibria. Since cost functions are differentiable and

semi-convex, a necessary and sufficient condition for a strategy profile to be a

(pure) Nash equilibrium is that for every player i, the marginal cost of every

used basic strategy is the same and at most that of every unused basic strategy.

That is, ∑
e∈p

`ie(~xe) ≤
∑
e∈p′

`ie(~xe)

for all players i ∈ [n] and all p, p′ ∈ Pi with xip > 0, where `ie(~xe) denotes

`e(xe) + xie · `′e(xe). This condition can alternatively be stated as a variational
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inequality: ∑
e∈E

`ie(~xe) · (yie − xie) ≥ 0 (2)

for every player i ∈ [n] and every strategy ~yi. See Harks [14, Lemma 1], for

example, for formal proofs of these characterizations.

Price of Anarchy. The price of anarchy of an equilibrium concept in a game is

the largest ratio between the (expected) social cost of an equilibrium and that

of a minimum-cost strategy profile.

3. Local Smoothness

This section presents a “local” refinement of the smoothness framework

in [27]. This refinement can lead to better upper bounds on the price of anarchy

for games with convex strategy sets, and in particular permits optimal upper

bounds for splittable congestion games. Bounds proved using local smoothness

extend automatically to the correlated equilibria of a game; but in contrast to

standard smoothness bounds, they do not always extend to the coarse correlated

equilibria of a game.

For context and comparison, we next review the standard definition of

smooth games [27].5 By a cost-minimization game, we mean a finite set of

players, a strategy set Si for each player i, and a cost function ci for each

player that maps outcomes (i.e., strategy profiles) to the nonnegative reals. A

cost-minimization game is (λ, µ)-smooth if

n∑
i=1

ci(~y
i, ~x−i) ≤ λ · SC(~y) + µ · SC(~x) (3)

for every pair ~x, ~y of outcomes. The main extension theorem in [27] states that

every coarse correlated equilibrium of a (λ, µ)-smooth game has expected cost

at most λ/(1− µ) times the cost of an optimal outcome.

5There are several precursors to and recent variations on this definition; see [27] for a

detailed discussion.
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For the rest of this section, we consider cost-minimization games for which

every strategy set Si is a convex compact subset of some Euclidean space Rmi

and every cost function ci is continuously differentiable. The splittable con-

gestion games that we consider satisfy these assumptions. The rough intuition

behind local smoothness is to require the constraint (3) only for outcomes ~y

that are “arbitrarily close to” ~x. Since dropping constraints increases the set of

feasible values for λ and µ, this idea has the potential to yield improved upper

bounds on the POA.6 Formally, we implement this idea as follows.

Definition 3.1 (Locally Smooth Games) A cost-minimization game is lo-

cally (λ, µ)-smooth with respect to the outcome ~y if for every outcome ~x,

n∑
i=1

[
ci(~x) +∇ici(~x)T (~yi − ~xi)

]
≤ λ · SC(~y) + µ · SC(~x) . (4)

In Definition 3.1, ∇ici := (∂ci/∂x
i
1, . . . , ∂ci/∂x

i
mi

) denotes the gradient of ci

with respect to ~xi.

We next prove that if a game is locally (λ, µ)-smooth with respect to an opti-

mal outcome with µ < 1, then the expected cost of every correlated equilibrium

— and hence every pure and mixed Nash equilibrium — is at most λ/(1 − µ)

times that of an optimal outcome.

Theorem 3.2 (Local Smoothness Bounds All Correlated Equilibria) Let P

be a correlated equilibrium of a cost-minimization game. If the game is locally

(λ, µ)-smooth with respect to the outcome ~y with µ < 1, then E~x∼P [SC(~x)] ≤
λ

1−µ · SC(~y).

6To see why standard smoothness arguments cannot prove optimal upper bounds on the

POA of splittable congestion games, note that the strategy sets in a splittable game contain

those of its unsplittable counterpart. Thus, for a fixed set of cost functions, the requirement (3)

is only more constraining in splittable games, and the best-provable upper bound can only be

larger. But, as Table 1 shows, the worst-case POA in splittable games is generally smaller

than that in the corresponding class of unsplittable games.

12



Proof: The key claim is that

E~x∼P
[
∇ici(~x)T (~yi − ~xi)

]
≥ 0

for every player i. Assuming the claim is true, we can complete the proof by

using (4) and the linearity of expectation (twice) to derive

E~x∼P [SC(~x)] ≤
n∑
i=1

E~x∼P
[
ci(~x) +∇ici(~x)T (~yi − ~xi)

]
≤ E~x∼P [λ · SC(~y) + µ · SC(~x)]

(5)

and then rearrange the terms.

To prove the key claim, suppose for contradiction that E~x∼P
[
∇ici(~x)T (~yi − ~xi)

]
<

0 for some player i. For brevity, define the deviation function δε : Si → Si by

δε(~x
i) := (1−ε)·~xi+ε·~yi. Intuitively, we are considering the hypothetical devia-

tion by player i that always replaces its strategy ~xi by one that is “a little closer”

to ~yi. Since strategy sets are convex, δε(~xi) is a well-defined strategy for every ε

between 0 and 1. In the limit as ε goes to zero, E~x∼P [ 1
ε (ci(δε(~x

i), ~x−i)− ci(~x))]

tends to E~x∼P [∇ici(~x)T (~yi − ~xi)], which is strictly negative by assumption.7

Thus, there is a sufficiently small ε > 0 such that E~x∼P [ci(δε(~x
i), ~x−i)] <

E~x∼P [ci(~x)], which contradicts the assumption that P is a correlated equilib-

rium.8 �

Example 3.3 (Local Smoothness Does Not Bound All Coarse Correlated Equilibria)

Consider the cost-minimization game defined by N = {1, 2}, S1 = S2 = [0, 1],

and c1(~x) = c2(~x) = (x1−x2)2 +ε, where ε > 0 is an arbitrarily small constant.

This identical-interest game has positive, continuously differentiable, convex

7This can be formally justified using the dominated convergence theorem: Since the strat-

egy sets are compact and the cost functions are continuously differentiable, there is a constant

M < ∞ such that | 1
ε
(ci(δε(~x

i), ~x−i) − ci(~x))| < M for every strategy profile ~x. Hence,

limε↘0

∫
1
ε
(ci(δε(~x

i), ~x−i)− ci(~x)) dP (~x) =
∫
∇ici(~x)T (~yi − ~xi) dP (~x).

8A similar trick was used by Neyman [21] to prove a rather different result, that every

game with convex compact strategy sets and a strictly concave potential function has a unique

correlated equilibrium.
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cost functions and convex compact strategy sets. Let P be the uniform dis-

tribution over the strategy profiles (0, α) and (1, 1 − α), where α ∈ (0, 1
4 ]. El-

ementary calculations verify that this is a coarse correlated equilibrium with

expected social cost 2α2 + 2ε. Further calculations show that for every strat-

egy profile ~x and every optimal strategy profile ~y (i.e., y1 = y2) it holds that∑2
i=1∇ici(~x)(yi − xi) = −2(x1 − x2)2 = −SC(~x) + SC(~y). Consequently, the

game is locally (1, 0)-smooth with respect to every optimal strategy profile. The

corresponding approximation factor of λ/(1− µ) = 1 obviously does not apply

to the coarse correlated equilibria P .

Remark 3.4 (Smoothness Versus Local Smoothness) Here is one reason

why standard smoothness arguments extend to coarse correlated equilibria but

local smoothness arguments do not. In the definition (3) of (λ, µ)-smoothness,

the outcome ~y is used to propose hypothetical deviations ~y1, . . . , ~yn for the

players. These proposed deviations are independent of the strategy profile ~x, and

for this reason the resulting approximation bound of λ
1−µ extends to all coarse

correlated equilibria. In Definition 3.1 and the proof of Theorem 3.2, however,

the outcome ~y induces the hypothetical deviations (1−ε)~x1+ε~y1, . . . , (1−ε)~xn+

ε~yn, which do depend on ~x. Fortunately, the proposed deviation (1− ε)~xi + ε~yi

for player i depends only ~xi and not on ~x−i, and for this reason the resulting

approximation bound of λ
1−µ extends to all correlated equilibria.

4. A Locally Smooth Upper Bound

We now instantiate the local smoothness framework of Section 3 for splittable

congestion games. We first need a simple observation. Define κ(x, y) as y2/4 if

x ≥ y/2 and x(y − x) otherwise.

Lemma 4.1 Let n ∈ N and x, y ≥ 0. For every ~x, ~y ∈ Rn≥0 with
∑n
i=1 xi = x

and
∑n
i=1 yi = y,

∑n
i=1

(
yi · xi − x2

i

)
≤ κ(x, y).
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Proof: Denote xmax = maxni=1 xi. We have

n∑
i=1

(
yi · xi − x2

i

)
≤

n∑
i=1

(yi · xi)− x2
max ≤ y · xmax − x2

max =
y2

4
−
(y

2
− xmax

)2

≤ y2

4
.

For the case where x < y/2, observe that z 7→ (y ·z−z2) is increasing on [0, y/2].

Consequently, y · xmax − x2
max ≤ y · x− x2 = x(y − x), as required. �

Next is a simple univariate condition on cost functions that implies local

smoothness of the corresponding class of splittable congestion games.

Proposition 4.2 Let L be a class of allowable cost functions. If

y · `(x) + κ(x, y) · `′(x) ≤ λ · y · `(y) + µ · x · `(x) (6)

for every ` ∈ L and x, y ≥ 0, then every splittable congestion game with cost

functions in L is locally (λ, µ)-smooth with respect to every outcome.

Proof: Consider a splittable congestion game with cost functions in L and two

strategy profiles ~x and ~y. Recall that `ie(~xe) denotes the marginal cost `e(xe) +

xie · `′e(xe). We have

n∑
i=1

[
ci(~x) +∇ici(~x)T (~yi − ~xi)

]
=
∑
i∈[n]

∑
e∈E

[
xie · `e(xe) + yie · `ie(~xe)− xie · `ie(~xe)

]
=
∑
e∈E

[
ye · `e(xe) + `′e(xe) ·

∑
i∈[n]

(
yie · xie − (xie)

2
)]

≤
∑
e∈E

[ye · `e(xe) + κ(xe, ye) · `′e(xe)] (7)

≤
∑
e∈E

[λ · ye · `e(ye) + µ · xe · `e(xe)] (8)

=λ · SC(~y) + µ · SC(~x) ,

where inequalities (7) and (8) follow from Lemma 4.1 and assumption (6), re-

spectively. �

We now define the quantity γ(L) as, intuitively, the best upper bound on

the POA that is provable using Theorem 3.2 and Proposition 4.2. Formally, we
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first define g`,x,y : R<1 → R ∪ {∞} by

g`,x,y(µ) :=
y · `(x) + κ(x, y) · `′(x)− µ · x · `(x)

y · `(y) · (1− µ)

for every admissible triple `, x, y, meaning a cost function ` ∈ L and values

x ≥ 0, y > 0 with `(y) > 0. If µ < 1, then for every admissible triple `, x, y, the

constraint (6) is equivalent to

g`,x,y(µ) ≤ λ

1− µ ; (9)

that is, g`,x,y(µ) is a lower bound on the best POA bound that can be proved

using Proposition 4.2 and a given value of µ < 1.

Non-admissible triples `, x, y can be ignored in Proposition 4.2. First, if `

is the zero function, inequality (6) reduces to 0 ≤ 0 irrespective of λ and µ.

Second, if ` is not the zero function, then define ξ := max{y ≥ 0 | y · `(y) = 0}.
This maximum is guaranteed to exist because y 7→ y · `(y) is continuous. Now

if (6) holds for all y > ξ, then it also holds for y = ξ (since both sides of (6) are

continuous in y), and hence for all y ∈ [0, ξ] (since the left-hand side of (6) is

nondecreasing in y).

The upshot is that, for µ < 1, the requirement of Proposition 4.2 — that

is, the conjunction of all constraints (6) over all triples ` ∈ L, x, y ≥ 0 — is

equivalent to

sup
`∈L

x≥0,y>0,`(y)>0

g`,x,y(µ) ≤ λ

1− µ . (10)

Put differently, for a fixed value of µ < 1, the value of λ that minimizes λ
1−µ

subject to condition (6) for all admissible triples is (1 − µ) times the left-hand

side of (10).

Given a non-trivial set of cost functions L, the best POA bound provable

using Theorem 3.2 and Proposition 4.2 is the infimum of λ
1−µ over all choices

of (λ, µ) with µ < 1 that meet condition (6) for all admissible triples. Since

condition (6) reduces to 0 ≤ µ · x · `(x) if y = 0, any finite POA bound also

requires µ ≥ 0. The left-hand side of (10) is the best POA bound for a given
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choice of µ, and the definition of γ(L) simply minimizes this POA bound over

the choices for µ:

γ(L) := inf
µ∈[0,1)

sup
`∈L

x≥0,y>0,`(y)>0

g`,x,y(µ) . (11)

The definition of γ(L), Proposition 4.2, and Theorem 3.2 immediately imply

the following.

Corollary 4.3 For every non-trivial set L of cost functions and every splittable

congestion game with cost functions in L, the price of anarchy of correlated

equilibria is at most γ(L).

5. A Matching Lower Bound for All Scale-Invariant Classes of Cost

Functions

In this section, we show that for every non-trivial scale-invariant set of cost

functions L, the worst-case price of anarchy of pure Nash equilibria in splittable

congestion games with cost functions in L is exactly γ(L). Before giving the

main construction in Section 5.2, we prove in Section 5.1 that γ(L) can “usually”

be approximated arbitrarily well by the intersection of a non-decreasing curve

g`1,x1,y1(µ) and a non-increasing curve g`2,x2,y2(µ). These two curves encode the

cost functions and resource loads that we use in the construction of a worst-case

congestion game. The “unusual” cases, in which γ(L) must be +∞, are handled

directly in Section 5.2.

5.1. Approximating γ(L) by Two Curves

Define ΓL : [0, 1) → R ∪ {∞} as the inner part of the infimum in the

definition (11) of γ(L):

ΓL(µ) := sup
`∈L

x≥0,y>0,`(y)>0

g`,x,y(µ) .

This is the optimal POA bound that can be proved using local smoothness (The-

orem 3.2 and Proposition 4.2) with the given value of µ. Figure 4 in Section 6
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provides plots of the functions g`,x,y and ΓL when L contains only linear and

constant functions. In general, the function ΓL is non-increasing on (0, µ] and

non-decreasing on [µ, 1) for some µ, and unbounded as µ approaches 0 or 1.

Given an admissible triple `, x, y, define the scalar h`,x,y by

h`,x,y := (y − x) · `(x) + κ(x, y) · `′(x) . (12)

A simple calculation shows that, for every admissible triple `, x, y and µ < 1,

h`,x,y and g`,x,y(µ) have the same sign. Specifically, g`,x,y(µ) has the form
a−µ·b
c·(1−µ) , with a, b ≥ 0, c > 0, the derivative of which is a−b

c·(1−µ)2 . Hence,

∂g`,x,y(µ)

∂µ
=

h`,x,y
y · `(y) · (1− µ)2

. (13)

Thus, the sign of h`,x,y indicates whether the function g`,x,y is strictly increasing,

strictly decreasing, or constant in µ. The values h`,x,y arise as “error terms” in

the construction in Section 5.2, and must be carefully managed to produce a

worst-case example.

Lemma 5.1 (Two Curves Lemma) Let L be a set of non-trivial cost func-

tions. Suppose there is an admissible triple `, x, y with h`,x,y < 0. Then, for

every γ̂ < γ(L), there are µ < 1 and admissible triples `1, x1, y1 and `2, x2, y2

so that

g`1,x1,y1(µ) = g`2,x2,y2(µ) ≥ γ̂ and

sgn(h`1,x1,y1) = − sgn(h`2,x2,y2) .

Proof: The easy case is when there is an admissible triple `, x, y such that g`,x,y

is a constant function larger than γ̂. In this case, h`,x,y = 0, and we can use this

triple for both `1, x1, y1 and `2, x2, y2 to satisfy the requirements of the lemma.

Relatively simple tight lower-bound constructions are possible in this special

case, as we show later. In the rest of this proof, we assume that no such triple

exists.

Define

µ∗ := inf{µ ∈ [0, 1) | ∃ admissible triple `, x, y with g`,x,y(µ) ≥ γ̂ and g`,x,y is strictly increasing } .
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This infimum is taken over a non-empty set and hence µ∗ < 1. To see this,

choose ` ∈ L and y > x > 0 such that `(x) > 0. Note that h`,x,y > 0. Then

g`,x,y(µ) has the form a+b−µ·c
1−µ where 0 < a ≤ 1, b ≥ 0, and 0 < c < a. Therefore,

limµ↗1 g`,x,y(µ) = ∞. This shows that the condition in the definition of µ∗ is

met for values of µ that are sufficiently close to 1.

The key claim is that there is a value µ̂ < 1 and admissible triples `1, x1, y1

and `2, x2, y2 so that g`1,x1,y1 is strictly increasing, g`2,x2,y2 is strictly decreasing,

and g`2,x2,y2(µ̂) ≥ g`1,x1,y1(µ̂) ≥ γ̂. Then, since both functions are unbounded

at µ = 1, they must intersect at a point (µ, γ) with µ̂ ≤ µ < 1 and γ ≥ γ̂, which
completes the proof.

To prove the key claim, we distinguish two cases.

(1) There is a strictly increasing function g`1,x1,y1 with g`1,x1,y1(µ∗) > γ̂.

Since g`1,x1,y1 is a continuous function, there is a value µ̂ < µ∗ so that

also g`1,x1,y1(µ̂) > γ̂. We must have µ∗ = 0 in this case, as otherwise we

could have found a smaller value for µ∗.

Next, by the assumption of the lemma, there is an admissible triple `, x, y

with h`,x,y < 0, which implies 0 < y < x. Define ξ := max{y ≥ 0 |
y · `(y) = 0}. Note that g`,x,y(µ̂) ≥ −µ̂·x·`(x)

(1−µ̂)·y·`(y)

y↘ξ−−−→ ∞, since µ̂ < 0.

Denote `2 = `, x2 = x2, and let y2 be such that g`2,x2,y2(µ̂) ≥ g`1,x1,y1(µ̂).

(2) For every strictly increasing function g`,x,y, g`,x,y(µ∗) ≤ γ̂.

Since ΓL(µ∗) ≥ γ(L) > γ̂, in this case there must be a strictly decreasing

function g`2,x2,y2 with g`2,x2,y2(µ∗) > γ̂. Since g`2,x2,y2 is continuous, we

can choose δ so that µ∗ + δ < 1 and g`2,x2,y2(µ∗ + δ) > γ̂. Moreover,

by the definition of µ∗, there is a strictly increasing function g`1,x1,y1 with

g`1,x1,y1(µ∗+δ) ≥ γ̂. Since g`1,x1,y1(µ∗) ≤ γ̂ by assumption, continuity and

monotonicity imply that there is a value µ̂ ∈ [µ∗, µ∗+δ] with g`2,x2,y2(µ̂) ≥
g`1,x1,y1(µ̂) ≥ γ̂.

�
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Remark 5.2 The requirement in Lemma 5.1 that there is an admissible triple

`, x, y with h`,x,y < 0 is not without loss of generality. For instance, suppose

that L contains only a function ` that satisfies `(x) = 0 for x ∈ [0, 2] and

`′(x) ≥ x · `(x) > 0 for all x > 2. Every admissible triple satisfies y > 2.

Definition (12) implies that h`,x,y ≤ 0 only if y ≤ x. For all such admissible

triples, h`,x,y = (y − x) · `(x) + y2

4 · `′(x) > y · `(x) > 0.

5.2. The Construction

5.2.1. Guiding Necessary Conditions

To construct a family of examples with POA approaching the upper bound

proved in Theorem 3.2 and Proposition 4.2, it is necessary that all of the in-

equalities in the upper bound — inequalities (5), (7), and (8) — hold with

equality in the limit.

The plan for our construction is as follows. We first apply Lemma 5.1 to

obtain two admissible triples `1, x1, y1 and `2, x2, y2. We then construct a family

of instances that each contain two groups of resources, one with cost functions

`1 and one with cost functions `2. Each instance will possess a Nash equilibrium

~u in which players are indifferent between all of their basic strategies and the

load on all resources of group i ∈ {1, 2} is xi, and yet there is another strategy

profile ~v in which the load approaches yi on each resource of group i. Suppose

now that g`i,xi,yi(µ) = λ
1−µ for i = 1, 2. By the definition of h`i,xi,yi , we have

xi · `i(xi) = λ · yi · `i(yi) + µ · xi · `i(xi)− h`i,xi,yi . (14)

This indicates that we need sgn(h`1,x1,y1) = − sgn(h`2,x2,y2) and to choose the

number of resources in groups 1 and 2 so that in the sum of the above equations,

over all resources, the h`i,xi,yi-terms vanish. Then SC(~u)
SC(~v) = λ

1−µ as needed.

So far, our construction idea provides tightness for the variational inequality

(5) and for the (λ, µ)-smoothness inequality (8). To see how to make inequality

(7) tight as well, we extend an observation of Cominetti et al. [8, Theorem 3.1].

Consider Lemma 4.1, which distills inequality (7). As n → ∞, Lemma 4.1

is asymptotically tight when x1 = min{y2 , x}, x2 = · · · = xn, and y1 = y,
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y2 = · · · = yn = 0. To see this, note that if x ≥ y
2 , then x1 = y

2 , x2 = · · · =

xn = 2x−y
2n−2 , and thus

∑
i(yi · xi − x2

i ) = y2

4 −
(2x−y)2

4n−4 . If x < y
2 , then x1 = x,

x2 = · · · = xn = 0, and thus
∑
i(yi · xi − x2

i ) = x(y − x).

To take advantage of this observation in our construction, we ensure that for

each resource of group i, one player contributes load min{yi2 , xi} to the resource

in the Nash equilibrium, while all other players contribute only infinitesimal

amounts.

5.2.2. The Main Construction

The following theorem is the main construction of worst-case examples. The

edge case in which Lemma 5.1 does not apply is treated separately in the fol-

lowing section.

Theorem 5.3 (Main Construction) Let λ, µ ∈ R with µ < 1. Let `1, `2 be

cost functions and x1, x2 ≥ 0 and y1, y2 > 0. Define ω by `2(x2) + y2
2 · `′2(x2) if

x2 ≥ y2/2 and `′2(x2) > 0, and by `2(x2) + x2 · `′2(x2) otherwise. Suppose that

all of the following conditions hold:

`1(x1) = `2(x2) = 1 ,

g`1,x1,y1(µ) = g`2,x2,y2(µ) = λ
1−µ , and

h`2,x2,y2 = −ω · h`1,x1,y1 ≥ 0 .

Then, there is an infinite family of splittable congestion games with cost func-

tions in {σ1`1, `2 : σ1 ≥ 1} and with limiting price of anarchy at least λ
1−µ .

Proof: We construct a family of instances determined by two scaling parame-

ters n, p2 ∈ N. All of the other variables, described in Table 2, are functions of

n and p2. For convenience, we also denote hi := h`i,xi,yi for i ∈ {1, 2}, and we

use the notation 1 := 2 and 2 := 1.

Resources. There are two groups of resources, with group i ∈ {1, 2} consisting
of n · pi resources that we denote by (i, 0), . . . , (i, n · pi − 1). A good intuition

is to think of two cycles; see also Figure 2, which illustrates our construction.
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Table 2: Symbols used in the description of the lower-bound construction

Symbol Meaning (load refers to load in Nash

equilibrium)

Definition (references to

paragraph “The Equilibrium”)

n number of players per group free scaling parameter

pi size of “optimal” strategies in group i p1 := dp2 · ωe

p2: free scaling parameter

qi size of “non-optimal” strategies in

group i

qi :=
⌊
pi · 2xi−yi+2hi

yi

⌋

ti number of “non-optimal” strategies for

each player in group i

ti :=
pi·(n−1)

qi

αi load each player from group i puts on

its “optimal” strategy

see (18) in condition (3.)

βi load each player from group i puts on

its “non-optimal” strategies

βi :=
xi−αi−n·γi

n−1

γi load each player from group i puts on

each “optimal” strategy of group i

γ1 := −h1
n

γ2 := 0

wi weight of players in group i wi := αi + ti · βi + n · γi

σi scaling factor for cost functions in

group i

σ1: see (16) in condition (2.)

σ2 := 1

Resources in group i have the cost function σi · `i, where σ1 will be determined

later and σ2 := 1.

Players and Strategies. There will be two groups of players, with group i ∈
{1, 2} consisting of n players denoted by (i, 0), . . . , (i, n− 1). Each player (i, j)

has one “optimal” strategy Pi,j,0, which comprises pi resources. Different play-

ers’ optimal strategies are disjoint, so they partition the resources of a group.

If xi ≥ yi
2 and `′i(xi) > 0, then player (i, j) has also ti := pi·(n−1)

qi
“non-optimal”

strategies Pi,j,1, . . . ,Pi,j,ti , each comprising qi resources. These non-optimal

strategies are mutually disjoint, and also disjoint from the player’s optimal
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strategy. Finally, players from group 2 can also use the “optimal” strategies

for group 1, i.e., P1,0,0, . . . ,P1,n−1,0. Formally:

Pi,j,0 := {(i, j · pi), . . . , (i, (j + 1) · pi − 1)} , and

Pi,j,k := {(i, (j + 1) · pi + (k − 1) · qi), . . . ,

(i, (j + 1) · pi + k · qi − 1)} for k ≥ 1 .

The weight of each player in group i is wi := αi+ ti ·βi+n ·γi, where γ1 := −h1

n

and γ2 := 0 (since players from group 1 cannot use any resources in group 2),

and the parameters αi, βi will be determined below.

S1,j,0

S1,j,1

S1,j,s1

n · p2 resources
with cost �2(·)

n · p1 resources
with cost σ1 · �1(·)

S2,j,1

S2,j,0

S2,j,s2 S2,j,s2 – 1

S1,j + 1,0
S1,j + 1,1

S1,j + 1,s1

Figure 2: Illustration of construction with p1 = 3, q1 = 4 and p2 = 2, q2 = 3

The Equilibrium. Define the strategy profile ~u as follows. Each player (i, j) uses

strategy Pi,j,0 with load αi and each of the strategies Pi,j,1, . . . ,Pi,j,ti−1 with

load βi. If xi < yi
2 or `′i(xi) = 0, then βi is necessarily 0. In addition, each

player in group 2 uses each of the n “optimal” strategies in group 1 with load

γ1.

Define the strategy profile ~v as that in which every player uses only its

“optimal” strategy.

We next state six conditions that formalize the high-level plan outlined in the

previous section. After their statements, we explain how to choose values for the

parameters in Table 2 so that all of the conditions are satisfied simultaneously.
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1. In the profile ~u, the load on each resource of group i is exactly xi. That

is,

αi + (n− 1) · βi + n · γi = xi ; equivalently,

βi =
xi − αi − n · γi

n− 1
. (15)

2. In the profile ~u, each player is faced with equal marginal costs for all its

strategies, and hence the profile is a Nash equilibrium. The first condition

for players in group 2 is

p1 · σ1 · (`1(x1) + γ1 · `′1(x1)) = p2 · σ2 · (`2(x2) + α2 · `′2(x2)) . (16)

Second, for i = 1, 2, if xi ≥ yi
2 and `′i(xi) > 0, then

pi · (`i(xi) + αi · `′i(xi)) = qi · (`i(xi) + βi · `′i(xi)) . (17)

3. If `′i(xi) > 0, then for each resource in group i there is one player who

contributes load min{yi2 , xi}± o(1) while all other players contribute load

o(1).

If i = 2 and x2 ≤ y2
2 , there is nothing to show because α2 = x2. (For

i = 1, the assumption that h1 ≤ 0 implies that x1 > y1 >
y1
2 .) Otherwise,

yi
2 ≤ xi and, recalling the assumption that `i(xi) = 1, we can plug in

`′i(xi) = 4(xi−yi+hi)
y2i

and (15) into (17) to obtain

αi =

 y2
i ·
(
qi
pi
− 1
)

4 · (xi − yi + hi)
+
qi · (xi − n · γi)

(n− 1) · pi

 · [1 +
qi

(n− 1) · pi

]−1

. (18)

The desired limits αi
n,p2→∞−−−−−→ yi

2 and βi
n,p2→∞−−−−−→ 0 hold provided

qi
pi

p2→∞−−−−→ 2xi − yi + 2hi
yi

, which holds if we set

qi :=

⌊
pi ·

2xi − yi + 2hi
yi

⌋
. (19)

4. In the strategy profile ~v, the load on every resource in group i is yi + o(1).

That is, wi
n,p2→∞−−−−−→ yi.
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We first make some preliminary calculations. If x2 ≥ y2
2 and `′2(x2) > 0,

then

n · γ1 = −h1 =
h2

ω
=

h2 · y2

y2 +
y22
2 · `′2(x2)

=
y2

2
· 2h2

2x2 − y2 + 2h2
.

(20)

If, on the other hand, x2 ≤ y2
2 or `′2(x2) = 0, then

n · γ1 = −h1 =
h2

ω

=
(y2 − x2) · (`2(x2) + x2 · `′2(x2))

`2(x2) + x2 · `′2(x2)

= y2 − x2 .

Now, consider i ∈ {1, 2}. Recall that our assumption that h1 ≤ 0 implies

that x1 ≥ y1.

• If `′1(x1) = 0, then w1 = α1 = x1−n ·γ1 = x1 +h1 = x1 +(y1−x1) =

y1.

• If x2 ≤ y2
2 or `′2(x2) = 0, then w2 = α2 +n ·γ1 = x2 + (y2−x2) = y2.

• Otherwise, xi ≥ yi
2 and `′i(xi) > 0. Using equations (15) and (19),

and also equation (20) for the i = 2 case, we have

wi = αi + ti · βi + n · γi
= αi +

pi
qi
· (xi − αi − n · γi) + n · γi

n,p2→∞−−−−−→ yi
2
·
(

1 +
2xi − yi − 2n · γi

2xi − yi + 2hi

)
+ n · γi

= yi .

5. The social cost of the Nash equilibrium ~u is ( λ
1−µ −o(1)) times that of the

profile ~v.

Using condition 1, write SC(~u) =
∑
i=1,2 n·pi·σi·xi·`i(xi). The assumption

that g`i,xi,yi(µ) = λ
1−µ for i = 1, 2 means, as in (14), that

SC(~u) = λ · Φ + µ · SC(~u) + ∆ ,
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where Φ =
∑
i=1,2 n · pi · σi · yi · `i(yi) and ∆ = −∑i=1,2 n · pi · σi · hi.

That is,

SC(~u)

Φ
=

λ

1− µ +
∆

Φ · (1− µ)
.

Assuming condition 4, we have Φ
n,p2→∞−−−−−→ SC(~v). Thus, the present

condition follows provided ∆
Φ

n,p2→∞−−−−−→ 0. Recalling that h2 = −ω · h1, if

we set p1 ≈ p2 · ω, then

|∆| ≤ n · p2 · h2 · |σ2 − σ1| .

Consequently, ∆
Φ

n,p2→∞−−−−−→ 0 provided σ1
n,p2→∞−−−−−→ 1. (Recall that always

σ2 = 1.) We check that this is indeed the case below.

6. All parameters are feasible, i.e.,

n, pi, qi, ti ∈ N, αi, βi, γi ≥ 0, σi > 0 .

We now argue that all six conditions can indeed be satisfied simultaneously.

Choose values for the scaling parameters n, p2 ∈ N. Set γ1 = −h1

n and γ2 = 0.

Next set p1 according to condition 5 (as ≈ p2 ·ω), qi according to (19) in condi-

tion 3, ti as ≈ pi(n−1)/qi, and αi, βi to satisfy the simultaneous equations (15)

and (17). (If xi < yi
2 or `′i(xi) = 0, then equation (17) is replaced by the equa-

tion βi = 0.) Set σ2 = 1 and σ1 according to (16) of condition 2. Now, condi-

tions 1–3 imply also condition 4, as shown above. Condition 5 reduces to showing

that σ1
n,p2→∞−−−−−→ 1. After solving for σ1 in (16), this follows since γ1

n,p2→∞−−−−−→ 0

and p2
p1

n,p2→∞−−−−−→ 1
ω by definition, α2

n,p2→∞−−−−−→ min{y22 , x2} by condition 3, and

using the definition of ω. Finally, consider the non-negativity constraints in

condition 6. These hold for γ1, γ2 by definition and for α1, α2 by condition 3.

For βi, we can assume that xi ≥ yi
2 and `′i(xi) > 0, as otherwise βi = 0.

Since γ2 = 0, equation (15) and condition 3 imply that β2 ≥ 0. For i = 1, we

have x1−α1
n,p2→∞−−−−−→ x1− y1

2 and n · γ1 = −h1 = x1− y1− y21 ·`
′
1(x1)
4 < x1− y1

2 ;

inspecting (15) shows that β1 ≥ 0. This verifies the construction and completes

the proof. �
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Remark 5.4 (Network Congestion Games) Since each player’s basic strate-

gies in this construction are disjoint, these congestion games can be represented

as (directed) network congestion games: orient both cycles, give each player its

own source and sink vertices (outside the cycles), and paths corresponding to

its basic strategies.

5.2.3. An Edge Case

Before combining our results into a generally applicable lower bound, we

need to give a related construction for the sets of cost functions L with no

triples `, x, y such that h`,x,y < 0. The next lemma shows that, in this case,

there is a family of games that admit strategy profiles with a per-resource cost

approaching zero and Nash equilibria with positive per-resource cost (bounded

away zero). Thus, the worst-case POA is +∞ with respect to such sets of cost

functions. This special case does not require scale-invariance.

Lemma 5.5 Let ` be a cost function so that h`,x,y > 0 for every admissible

triple `, x, y. There is a sequence of congestion games using only the cost func-

tion ` and with infinite limiting price of anarchy.

Proof: Clearly, ` is not the zero function. Moreover, ξ := max{x | `(x) = 0} > 0

(and this is well defined). To see this, suppose for contradiction that `(y) > 0

for all y > 0. Then, for fixed x > 0 and arbitrary y > 0, we have h`,x,y =

(y − x) · `(x) + κ(x, y) · `′(x)
y↘0−−−→ −x · `(x) < 0, a contradiction.

We give a sequence of instances similar to but simpler than the lower-bound

construction in Theorem 5.3. There is only one group of resources and players.

As in the previous construction, we leave open several parameters to enable

limiting arguments:

• The number of players and resources is an odd number n.

• The load on each resource in the Nash equilibrium is denoted by x̂ and

will approach 3ξ
2 .
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• The load each player puts on its “optimal” strategy in the Nash equilibrium

is α and will approach ξ
2 .

All other parameters are defined as follows.

• The size of the “optimal” strategy of each player is p = 1.

• The size of the “non-optimal” strategy of each player is q = 2.

• Each player has t = p·(n−1)
q non-optimal strategies.

• The load each player puts on each of its “non-optimal” strategies is β =

x̂−α
n−1 .

• The load on each resource in the optimum is equal to the weight of each

player, which is w = α+ t · β.

For a given choice of x̂ and α, the corresponding strategy profile is a Nash

equilibrium if the variational inequality (2) — corresponding to condition (17)

in Theorem 5.3 — holds with equality:

`(x̂) + α · `′(x̂) = 2 ·
(
`(x̂) +

x̂− α
n− 1

· `′(x̂)

)
, i.e., `′(x̂) =

`(x̂)

α
+

2 · (x̂− α)

α · (n− 1)
· `′(x̂) .

(21)

Every triple `, x, y with x ≥ y > ξ is admissible and, by assumption, satisfies

h`,x,y = (y − x) · `(x) + y2

4 · `′(x) > 0. Due to continuity of h`,x,y in y, the

previous inequality also holds (not necessarily strictly) for y = ξ; that is, `′(x) ≥
4
ξ2 · (x− ξ) · `(x). Hence, for every x > 3ξ

2 we have `′(x) > 2
ξ · `(x).

By the previous observation, for every δ > 0 we can choose x̂ ∈ [ 3ξ
2 ,

3ξ
2 + δ)

so that `′(x̂) > 2
ξ · `(x̂). Thus, we can choose n ∈ N large enough so that

`′(x̂) >
2 · `(x̂)

ξ
+

4 · (x̂− ξ
2 )

ξ · (n− 1)
· `′(x̂) .

Since the right-hand side of (21) is continuous and monotonically decreasing in

α, and unbounded for α ↘ 0, we can find α ∈ (0, ξ2 ) so that (21) holds with

equality.
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Recall that the weight of each player is

w = α+ t · β = α+
p · (n− 1)

q
· x̂− α
n− 1

=
x̂+ α

2
<

2x̂+ ξ

4
< ξ +

δ

2
.

Consequently, we can find a sequence of games so that the load on each resource

in some Nash equilibrium approaches 3ξ
2 , while the load on each resource in a

different strategy profile approaches ξ. Since `( 3ξ
2 ) > 0, `(ξ) = 0, and cost

functions are continuous, the POA grows without bound as δ → 0 and n→∞.

�

5.2.4. Putting It All Together

We can now prove the main result of this section.

Corollary 5.6 (Tight Lower Bound) Let L be a scale-invariant set of cost

functions. Then, the worst-case price of anarchy in atomic splittable congestion

games with cost functions in L is exactly γ(L).

Proof: The upper bound is due to Corollary 4.3. For the lower bound, the

special case in which L does not admit any triples `, x, y with h`,x,y < 0 is

addressed by Lemma 5.5. In the rest of the proof, we assume that there is an

admissible triple `, x, y with h`,x,y < 0.

We show that, for any two triples `1, x1, y1 and `2, x2, y2 produced by Lemma 5.1,

there are triples ̂̀1, x̂1, ŷ1 and ̂̀2, x̂2, ŷ2 that can be used in the lower-bound con-

struction of Theorem 5.3 and that induce the same functions g`,x,y.

We start with a simple observation. Let ` be a cost function and σ, τ >

0. Define ̂̀(x) := σ · `(τ · x), which belongs to L by scale-invariance. Then,̂̀′(x) = σ · (`(τ · x))′ = σ · τ · `′(τ · x). Consequently, ĝ̀,x,y = g`,τ ·x,τ ·y and

τ · ĥ̀,x,y = σ · h`,τ ·x,τ ·y.
We can assume that `i(xi) > 0 because otherwise g`i,xi,yi = 0. This cannot

happen provided we use γ̂ > 1 in Lemma 5.1. Now set ̂̀2(x) := 1
`2(x2) · `2(x),

x̂2 = x2, ŷ2 = y2. Define ω as in Theorem 5.3 in terms of ̂̀2, x̂2, ŷ2. Let

τ :=
−h`1,x1,y1 · ω
`1(x1) · ĥ̀

2,x̂2,ŷ2

.
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Let ̂̀1(x) := 1
`1(x1) · `1(τ · x), x̂1 = x1

τ , ŷ1 = y1
τ . Then

ĥ̀
2,x̂2,ŷ2

=
−h`1,x1,y1 · ω
`1(x1) · τ = −ĥ̀

1,x̂1,ŷ1
· ω ,

as needed. �

5.2.5. Example: Cubic Cost Functions

We give an example of our lower-bound construction when L consists of the

cubic monomials {ax3 : a ≥ 0}. Monomial cost functions are a “lucky case”

where, in Theorem 5.3, we can take h`i,xi,yi = 0. In such cases, similarly to

the construction in Lemma 5.5, only one cycle of resources is needed and the

scale-invariance hypothesis can be dropped.

Consider the admissible triple `, x, y with `(z) = z3, x = 3
2 , y = 1. It is easy

to verify that

h`,x,y = (y − x) · `(x) +
y2

4
· `′(x)

= x2 ·
(

(y − x) · x+
3

4

)
= 0 ;

the function g`,x,y is identically equal to ( 3
2 )4 = 5.0625. Choose λ, µ ∈ (0, 1)

such that g`,x,y(µ) = λ
1−µ .

The family of instances is as follows. There are n players and n resources,

each with cost function `. The players’ “optimal” strategies have size p = 1,

whereas their “non-optimal” strategies have size q = 2. Each player thus has

t = n−1
2 “non-optimal” strategies. We consider the strategy profile where every

player puts load α = [ 1
2 + 3

n−1 ] · [1 + 2
n−1 ]−1 = n+5

2·(n+1) on its “optimal” and

β = x−α
n−1 = 1

n+1 on each of its “non-optimal” strategies. Then:

1. The load on each resource is exactly

α+ (n− 1) · β = x .
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2. Each player is faced with equal marginal costs for all its strategies, because

p · (`(x) + α · `′(x)) = x2 · (x+ 3 · α)

= x2 · 6n+ 18

2 · (n+ 1)

= x2 · 2 · (x+ 3 · β)

= q · (`(x) + β · `′(x)) .

3. For each resource, there is one player who puts load α = 1
2 ± o(1) on it

whereas all other players put load β = o(1) on it.

4. In the “optimal” strategy profile, where each player only uses its “optimal”

strategy, the load on any resource is 1 + o(1), because each player has

weight

α+ t · β = α+
n− 1

2 · (n+ 1)

n→∞−−−−→ 1 .

5. The social cost is ( λ
1−µ −o(1)) times that in the “optimal” strategy profile.

This holds because each resource contributes cost

x · `(x) = λ · y · `(y) + µ · x · `(x) ,

where the equality is due to g`,x,y(µ) = λ
1−µ and the definition of h`,x,y.

Together with the upper bound in Section 6, this construction shows that the

price of anarchy for splittable congestion games with polynomial cost functions

of degree at most 3 is exactly ( 3
2 )4 = 5.0625.

5.2.6. Construction with Singleton Strategies

Continuing with the “lucky case” of the previous section (including monomial

cost functions), we reimpose the scale-invariance assumption and give a tight

lower-bound construction that uses only singleton strategies.

Theorem 5.7 Let λ ∈ R, µ < 1. Moreover, let L be a scale-invariant set of

cost functions, ` ∈ L, and x ≥ y > 0. Suppose that

g`,x,y(µ) = λ
1−µ and h`,x,y = 0 .
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Then, there is an infinite family of splittable congestion games with singleton

strategies, with cost functions in L, and with limiting price of anarchy at least
λ

1−µ .

Resource Level: 1

Player Weights: y · τ2 (x − y
2 ) · τ l

l – 1

y · τ l

0

y · τ1y
2

2 l

Figure 3: Illustration of construction with singleton strategies

Proof: We define a family of singleton congestion games, represented by full

k-ary trees of height l. To simplify our presentation, assume that the root node

and each leaf node have self-loops. Then, each edge corresponds to a player,

and each node in the tree corresponds to a resource. The strategies of a player

are its (at most two) incident nodes. Figure 3 illustrates the construction.

Let σ, τ > 0 be values to be determined later (dependent on k and l). The

cost function for resources at level j is `j(z) := 1
σj · `( zτj ). Note that the root

resource has cost function `0 = `. We say a player is in level j ∈ [n] if its edge is

between resource levels j−1 and j. The weight of each player in level j is y · τ j .
The player who only has the root resource as a strategy has weight y

2 , and the

players who only have a leaf resource as a strategy have weight (x− y
2 ) · τ l.

We first show that we can choose σ and τ such that the profile in which

each player splits its weight equally (i.e., each player on level j puts load y
2 · τ j

on both of its strategies) is a Nash equilibrium. Let τ := 2x−y
y·k , so that the

equilibrium load on each resource of level j ∈ [l]0 is y
2 · τ j + k · y2 · τ j+1 = x · τ j .

We need that each player faces equal marginal costs on each of its strategies,

i.e., for players on all levels j ∈ [l] that

`j−1(x · τ j−1) +
(y

2
· τ j
)
· `′j−1(x · τ j−1) = `j(x · τ j) +

(y
2
· τ j
)
· `′j(x · τ j) .

By plugging in that `j(z) = 1
σj ·`( zτj ) and `′j(z) = 1

σj ·τj ·`′( zτj ), this is equivalent
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to

`(x) +
y

2
· τ · `′(x) =

1

σ
·
[
`(x) +

y

2
· `′(x)

]
,

i.e.,

σ =
`(x) + y

2 · `′(x)

`(x) + y
2 · τ · `′(x)

k→∞−−−−→ 1 +
y

2
· `
′(x)

`(x)
=

2x− y
y

,

where the last equality follows from h`,x,y = 0. Consequently, k · τ · 1
σ

k→∞−−−−→ 1,

and the social cost contributed by the kj resources at level j ∈ [l]0 is kj · x · τ j ·
`(x)
σj

k→∞−−−−→ x · `(x).

Now consider the profile where each player uses only the strategy further

away from the root. Reasoning as above, the social cost contributed by the kj

resources at level j ∈ [l − 1] approaches y · `(y). The root resource on level 0

contributes y
2 · `(

y
2 ), and level l contributes kl · (x + y

2 ) · τ l · `(x+ y
2 )

σl

k→∞−−−−→
(x+ y

2 ) · `(x+ y
2 ), which is a constant independent of l.

Consequently, as l → ∞ and k → ∞ suitably quickly in l,the ratio of the

social cost in the Nash equilibrium and that of the other profile approaches
x·`(x)
y·`(y) = g`,x,y(µ) = λ

1−µ . �

6. Polynomial Cost Functions

This section gives a closed-form expression for the exact price of anarchy —

that is, analytically evaluates the parameter γ(L) — when the cost functions

are polynomials with degree at most d ∈ N and non-negative coefficients. For

d ∈ N, let Pd denote this set of cost functions. Also, we write Xd to denote

the monomial function x 7→ xd, and we let Md := {Xd, Xd−1, . . . , X0} be the

set of all monomials of degree at most d. We define Ψd as the unique positive

real x with xd + d·xd−1

4 = xd+1, that is, as Ψd := 1
2 (1 +

√
d+ 1). To save work,

we let g∗`,x,y denote g`,x,y, as defined in Section 4, except with κ(x, y) replaced

by y2

4 . We similarly define γ∗(L) (cf., (11)), h∗`,x,y (cf., (12)), and Γ∗L. We

start with three lemmas to simplify γ∗(Pd). In the end, it will turn out that

γ(Pd) = γ∗(Pd). The point of the next lemma is to give a closed-form formula

for the function µ 7→ supx≥0 g
∗
Xd,x,1(µ).
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Lemma 6.1 Let µ ∈ (0, 1) and d ≥ 1. Define g : R≥0 → R by g(x) :=

xd + d·xd−1

4 − µ · xd+1. Then, g has exactly one global maximum, at

ξ =
d+

√
d2 + d · µ · (d2 − 1)

2µ · (d+ 1)
.

Moreover, ξ is the only local extremum on R>0.

Proof: We first show that x = 0 is not a global maximum. If d = 1, then

g( 1
2µ ) = 1

2 + 1
4µ > 1

4 = g(0). If d > 1, then g(Ψd) = (1 − µ) · Ψd > 0 = g(0).

Since limx→∞ g(x) = −∞, g is continuous, and we know that g attains values

strictly larger than g(0) somewhere on R>0, it suffices to show that there is a

unique local extremum on R>0. For x > 0, the necessary first-order condition

for a local extremum is

g′(x) = dxd−2

(
x+

d− 1

4

)
− µ(d+ 1)xd = 0 . (22)

Indeed, ξ is the unique positive value for x that satisfies (22). �

µ

gX1,0.5,1

gX1,0.6,1

gX1,1.1,1

gX1,Ψ1,1

gX1,1.3,1

gX1,2,1
gX0,0,1

γ({X1, X0})
= 1.5

γ({X1})
≈ 1.46

0.50 1

2

1

Figure 4: The functions g`,x,y when ` is the identity or a constant function, and the corre-

sponding upper-envelope function (the thick line). Precisely, the envelope function here turns

out to be µ 7→ 1+µ
4·µ·(1−µ) .

The next lemma shows that we can restrict attention to monomial cost

functions and admissible triples `, x, y in which y = 1.
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Lemma 6.2 Let d ∈ N. Then,

γ∗(Pd) = γ∗(Md) = inf
µ∈(0,1)

sup
`∈Md
x≥0

g∗`,x,1(µ) .

Proof: We can rewrite

γ∗(Pd) = inf
(λ,µ)∈R×(0,1)

{
λ

1− µ

∣∣∣∣ ∀` ∈ Pd, x ≥ 0, y > 0 : λ ≥ y · `(x) + y2·`′(x)
4 − µ · x · `(x)

y · `(y)

}
.

(23)

The defining condition in (23) holds for a given (λ, µ) if and only if it holds

with ` restricted toMd. This implies the first equality in the lemma statement.

Moreover, when ` is constant (and non-zero), the inequality boils down to λ ≥
1 − µ · xy for all x ≥ 0 and y > 0. Consequently, this defining condition is

equivalent to

∀r ∈ [d], x ≥ 0, y > 0 : λ ≥ y · xr + y2·r·xr−1

4 − µ · xr+1

yr+1
and λ ≥ 1 . (24)

In (24), the values x
y and 1 yield the same inequality as the values x and y. We

can therefore fix y = 1 without loss of generality. Consequently,

γ∗(Pd) = inf
(λ,µ)∈R×(0,1)

{
λ

1− µ

∣∣∣∣ ∀r ∈ [d], x ≥ 0 :
λ

1− µ ≥ gXr,x,1(µ) and
λ

1− µ ≥ gX0,0,1(µ)

}
= inf
µ∈(0,1)

sup
`∈Md
x∈R≥0

g∗`,x,1(µ) .

�

Lemma 6.3 Let d ∈ N. Then:

1. γ∗({Xd}) = Ψd+1
d .

2. γ∗({X1, X0}) = 3
2 . If d ≥ 2, then γ∗({Xd, X0}) = γ∗({Xd}) = Ψd+1

d .

3. If L is one of {Xd} or {Xd, X0}, then γ(L) = γ∗(L).

4. γ(Pd) = γ({Xd, X0}).

Proof: For x > 0 define

µx :=
d · (4x+ d− 1)

(d+ 1) · 4x2
.
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By construction, every ξ fulfills the necessary first-order condition (22) for local

extrema of the function x 7→ g∗Xd,x,1(µξ). By Lemma 6.1, we get that ξ is even

a global maximum on R≥0. Hence, g∗Xd,ξ,1(µξ) = maxx∈R≥0
{g∗Xd,x,1(µξ)}.

1. Fix ξ := Ψd. Note that Ψ2
d = Ψd + d

4 and hence

µξ =
d · (4Ψd + d− 1)

(d+ 1) · (4Ψd + d)
∈ (0, 1) .

So far, we have shown that γ∗({Xd}) ≤ g∗Xd,ξ,1(µξ) = Ψd+1
d , with the

equality holding by the definition of Ψd. Since h∗Xd,ξ,1 = 0, g∗Xd,ξ,1 is

a constant function and Γ∗{Xd}(µ) ≥ Ψd+1
d for every µ ∈ (0, 1). Thus,

γ∗({Xd}) = Ψd+1
d .

2. Consider first the case d = 1. Fix ξ := 3
2 and note that µξ = 1

3 ∈ (0, 1).

We have that g∗X0,0,1( 1
3 ) = 3

2 = g∗Xd,ξ,1( 1
3 ). Because g∗X0,0,1 and g∗Xd,ξ,1

are increasing and decreasing functions, respectively, γ∗({Xd, X0}) = 3
2 .

Otherwise, if d ≥ 2, choose ξ := Ψd as in the first step. It holds that

g∗Xd,ξ,1(µξ) = Ψd+1
d =

(
1 +
√
d+ 1

2

)d+1

>
2 · (d+ 1)

d+ 1 +
√
d+ 1

·
(

1 +
√
d+ 1

2

)2

=
1

1− µξ
= g∗X0,0,1(µξ) .

As in step 1, we have γ∗({Xd, X0}) = Ψd+1
d .

3. For x < y
2 , we have κ(x, y) ≤ y2

4 . Therefore, for every admissible triple

`, x, y we have g`,x,y ≤ g∗`,x,y pointwise, with equality holding whenever
x
y ≥ 1

2 . Hence, when ξ ≥ 1
2 , we have gXd,ξ,1(µξ) = maxx∈R≥0

{gXd,x,1(µξ)}.
Since the arguments above use values of ξ larger than 1

2 , they extend to

the computation of γ.

4. The derivative of gXr,ξ,1(µ) with respect to r is

∂

∂r

ξr + r·ξr−1

4 − µ · ξr+1

1− µ

=
ξr−1

4(1− µ)
+ ln(ξ) · gXr,ξ,1(µ) ,
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which is positive if ξ > 1 and gXr,ξ,1(µ) ≥ 0. Consequently, if ξ > 1, as it

is in all computations above, then

gXd,ξ,1(µξ) = max
r∈[d]
x∈R≥0

{gXr,x,1(µξ)} .

�

Corollary 5.6, Lemma 6.2, and Lemma 6.3 immediately imply:

Corollary 6.4 The following exact bounds on the worst-case price of anarchy

in splittable congestion games with cost functions in L hold.

1. If L is the set of linear functions, then γ(L) = Ψ2
1 ≈ 1.457.

2. If L = P1, then γ(L) = 3
2 > Ψ2

1.

3. If L = Pd and d ∈ N≥2, then γ(L) = Ψd+1
d = ( 1+

√
d+1

2 )d+1.

7. Future Directions

We conclude with three proposals for further work. First, it would be in-

teresting to discover more applications of the local smoothness framework de-

fined in Section 3. One such application was given recently by Bhawalkar et

al. [5], who used the framework to obtain tight bounds on the POA in a fam-

ily of opinion formation games. In these games, each player i has an intrinsic

opinion si ∈ [0, 1] and expresses a (possibly different) opinion zi ∈ [0, 1]. A

player is interested both in how similar its expressed opinion is to its intrin-

sic one, and how its expressed opinion compares to those expressed by other

players. Formally, the cost to player i in the strategy profile ~z has the form

gi(zi− si) +
∑
j 6=i fij(zi− zj), where gi and fij are given cost functions. Bindel

et al. [6] were the first to study the POA in such games, and they give exact

worst-case bounds when gi(x) = x2 and fij(x) = wijx
2, where wij is a player

pair-specific weight. Bhawalkar et al. [5] used the local smoothness framework

to obtain tight POA bounds for all convex cost functions.
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Second, while the present work obtains tight POA bounds for the correlated

equilibria of splittable congestion games, the analogous question for coarse cor-

related equilibria remains open. We showed that local smoothness bounds do

not extend to coarse correlated equilibria in general (Example 3.3), but we have

not found an analogous example in a splittable congestion game. Very recently,

von Falkenhausen and Roughgarden [30] showed that, in splittable congestion

games with affine cost functions, every coarse correlated equilibrium is a mixture

of Nash equilibria and hence the POA bound of 3
2 applies. With nonlinear cost

functions, however, there are splittable congestion games that possess coarse

correlated equilibria that are costlier than all of their correlated equilibria [30].

The examples in [30] do not prove that the worst-case POA for coarse correlated

equilibria is larger than that for correlated equilibria, however.

Finally, it would be interesting to resolve the worst-case POA in splittable

congestion games in which every player has the same set of basic strategies.

In symmetric games, where every player also has the same weight, the worst-

case POA is identical to that in nonatomic congestion games [8]. With identical

basic strategies but different player weights, it remains open to improve over the

upper bounds of [8, 14] and the present work for general splittable congestion

games, or over the lower bounds of [29] for nonatomic congestion games.
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