Dynamic Programming & Sequence Alignment

Florian Schoppmann

Computer Science for Solving Problems

"Directions from California Academy of Sciences to Ferry Building?"

- Recurring problem
- Should have a "formula" or general scheme
- Need formal model!

model |'mädl|

- $[\ldots]$
- a simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions

[...]

New Oxford American Dictionary

A Model for the Directions Problem

A Model for the Directions Problem

A Model for the Directions Problem

A Model for the Directions Problem

Directed Acyclic Graphs

graph G = (V, E) where $E \subseteq V \times V$ edge-label function $c: E \rightarrow \{1, 2, ...\}$

Directed Acyclic Graphs

graph G = (V, E) where $E \subseteq V \times V$ edge-label function $c: E \rightarrow \{1, 2, ...\}$

Linearizing DAGs

Can move vertices so that edges from left to right!

Linearizing DAGs

Can move vertices so that edges from left to right!

Subproblem Structure

 $d(F) = \min\{d(D) + 4, d(E) + 2\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + C(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + C(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + c(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + C(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + C(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + c(u,v)\}$

 $\forall v \in V \setminus \{A\} : d(v) = \min_{(u,v) \in E} \{d(u) + C(u,v)\}$

Subproblem DAG

- Vertex \approx (optimization) problem
- Predecessor vertex ≈ subproblem
 - "Acyclic" is crucial
 - Subproblems may overlap
- Optimal solution for one vertex induces optimal solution for at least one predecessor
- "Bottom-up": Progressively larger problems

Fibonacci Numbers

 $F_n = F_{n-1} + F_{n-2}$ $F_1 = 1$ and $F_0 = 0$

Fibonacci Numbers

 $F_n = F_{n-1} + F_{n-2}$ $F_1 = 1$ and $F_0 = 0$

Example: Genealogical tree of male bee

"Top-Down" Recursion

 $F_n = F_{n-1} + F_{n-2}$ $F_1 = 1$ and $F_0 = 0$

This Java code is excruciatingly slow! Why?

```
long fib(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
    }
}
```


• Subproblem DAG is implicit

• Subproblem DAG is implicit

Dynamic Programming

- Term coined by Richard Bellman in the 1950s
- Programming ~ planning over time
- Secretary of Defense hostile to mathematical research

[...] it's impossible to use the word dynamic in a pejorative sense. [...] It was something not even a Congressman could object to. [...]

Eye of the Hurricane, An Autobiography (1984)

Edit Distance

- Measure for dissimilarity of two character strings
- Intuitive: minimum number of elementary edit operations (insert, delete, replace)
- Can represent as alignment

• Edit distance between "the" and "tea" = 2

Formal Problem Definition

• Input: Sequences x [1..n] and y [1..m]

• Output: length d of a minimum-length alignment (note: $0 \le n + m \le d$)

Where is the Subproblem DAG?

Only three alignments of x[1...n] and y[1...m]

$$x[1...n-1]$$
 $x[n]$ $x[1...n-1]$ $x[n]$ $x[1...n]$ $y[1...m-1]$ $y[m]$ $y[1...m]$ $y[1...m-1]$ $y[m]$

Where is the Subproblem DAG?

Only three alignments of x[1...n] and y[1...m]

Recall: Optimal Substructure

- Let *u* be predecessor (subproblem) of *v*
- d(v) = d(u) + c(u, v) $\Leftrightarrow u$ on shortest path from A to v

Edit Distance Has Optimal Substructure

An optimal alignment has optimal sub-alignments

A Dynamic Program for Edit Distance

$$x[1...n-1]$$
 $x[n]$ $x[n]$ $x[1...n-1]$ $x[n]$ $x[1...n]$ $y[1...m-1]$ $y[m]$ $y[1...m]$ $y[1...m-1]$ $y[m]$

d(i,0) = i and d(0,j) = j $d(n,m) = \min \begin{cases} d(n-1,m) + 1, \\ d(n,m-1) + 1, \\ d(n-1,m-1) + \text{diff}(x[n], y[m]) \end{cases}$

Extensions

- Equal cost for insertions, deletions, substitutions not necessary (or even appropriate)
- Example: DNA contains "junk" (so-called introns)
 - Insertions are expected in alignment

Smith-Waterman (1981)

 \bigcirc $s(n,m) = \max \left\{ \begin{array}{l} \max_{1 \le i \le n} \{s(n-i,m) - W_i\} \\ \max_{1 \le i \le m} \{s(n,m-i) - W_i\} \end{array} \right.$ s(n-1, m-1) + diff(x[n], y[m])

ACTG

С

G

А

CCT

Measure of similarity instead of dissimilarity

• diff(x, x) > 0

 Local alignment: Focus on regions with positive score

Smith-Waterman (1981)

 $s(n,m) = \max \{$

0 $\max_{1 \le i \le n} \{s(n - i, m) - W_i\}$ $\max_{1 \le i \le m} \{s(n, m - i) - W_i\}$ s(n - 1, m - 1) + diff(x[n], y[m])

Where is this used?

- Genome analysis for clinical use
 - Treatments
 - Drugs
 - Clinical trials

	de	1
Specin	ien ortation Kit	
KIT CONTAINS		
KIT CONTAINS (4) foreasizable bags. (3) 5-blide cathridges with sidels. (1) NSE side holder with side		

PATIENT INFORMATION				ABOUT TEST
PATIENT NAME	GENDER	RECORD ID	DATE OF BIRTH	
ACCESSION NO.	SPECIMEN TYPE	SAMPLE COLLECTIO	N SITE	
UMOR PERCENTAGE	HISTOPATHOLOGICAL DIAG	GNOSIS AND STAGE		
DRDERING PHYSICIAN INFORM	ATION			
HYSICIAN NAME	DATE TEST ORD	ERED	CONSULTING PATHOLOGIST	
IME SPECIMEN COLLECTED	TIME	REPORT ISSUED		
	ТІМЕ	REPORT ISSUED		
EPORT OVERVIEW				
	CONTRAINDICAT		POTENTIAL CLINICAL TRIALS	ACTIONABLE VARIANTS DETECTED
EPORT OVERVIEW			POTENTIAL CLINCAL TRIALS	
EPORT OVERVIEW INDICATED THERAPIES 3	CONTRAINDICA		POTENTIAL CLINCAL TRIALS	
EPORT OVERVIEW NDICATED THERAPIES 3	CONTRAINDICA		ROTENTIAL CLINCAL TRIALS	
eport overview	CONTRAINDICA		rotential CLINCAL TRIALS	

Passion for mathematics

Software Engineering as Hobby

Participation in maths and programming Contests

Computational Infrastructure: Dataflow Programming

Algorithms for "Big Data"

Regression Least Squares

Clustering *k*-means

Algorithms for "Big Data"

Regression Least Squares

Clustering *k*-means

Algorithms for "Big Data"

Regression Least Squares

Clustering *k*-means

Selfish Routing

Rational behavior but not optimal!

1

Stanford

Take-Home Points

- Solve problems by identifying smaller subproblems
- Computer Science is way more than just coding

Take-Home Points

- Solve problems by identifying smaller subproblems
- Computer Science is way more than just coding
- We're hiring! ☺